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ABSTRACT

We present Atlas, a procedural grammar for constructing data visual-
izations. Unlike most visualization grammars which use declarative
specifications to describe visualization components, Atlas exposes
the generative process of a visualization through a set of concate-
nated high-level production rules. Each of these rules describes how
an input graphical object is created, transformed, or joined with ab-
stract data to derive an output object. The visualization state can thus
be inspected throughout the generative process. We demonstrate
Atlas’ expressivity through a catalog of visualization designs, and
discuss the trade-offs in its design by comparing it to state-of-the-art
grammars.

Index Terms: Human-centered computing—Visualization—Visu-
alization systems and tools—Visualization toolkits

1 INTRODUCTION

Visualization grammars [23] enable the construction of a wide range
of visualization designs with a relatively small set of building blocks.
Most visualization grammar implementations are in the form of
declarative specifications [6, 19, 21], where users only need to de-
scribe the components of a chart such as marks and encodings, and
a compiler translates the textual specification into the desired vi-
sualization. Declarative specifications are concise and expressive,
and relieve users from low-level details by hiding generative mecha-
nisms and control flows. However, they may pose explainability and
extensibility challenges. Debugging and tracing the intermediate
results can be difficult, especially for novice users. To those who are
used to thinking in terms of graphical objects, the abstract syntax in
these specifications may not be intuitive [7, 12]. It is also hard to in-
corporate user-defined visualization logic if the relevant mark types
or structures have not been included in the grammar implementation.

Research on graphical authoring tools [12,16,17] addresses some
of these challenges. In these tools, users construct data visualizations
by directly manipulating graphical objects. By providing immediate
and interpretable visual feedback after each operation, these author-
ing tools allow users to better understand and control visualization
generative processes. In many cases, user operations are translated
into grammatical expressions in the underlying system. Some tools
also offer greater flexibility to compose visual structures without
underlying grammatical formalisms [11, 12, 20, 25]. Compared to
text-based grammar toolkits, however, graphical interfaces are less
ideal for automation (e.g., batch generation of multiple visualiza-
tions), and it is challenging to build applications that leverage or
augment the capabilities of the tools. A visualization grammar based
on the abstractions from these authoring frameworks has the po-
tential to retain the benefits of step-wise graphics-centric authoring
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while serving as a foundation for automating visualization genera-
tion and building future interactive applications.

In this paper, we present Atlas, a visualization grammar that
synthesizes and extends ideas from existing graphical authoring tools.
Three high-level principles guide the design of Atlas. First, we take
a graphics-centric approach: instead of representing visualization
construction as a data transformation process, we treat graphical
objects as first-class citizens, and focus on how graphical objects can
be created, modified and joined with data to generate visualizations.
Second, the grammar uses a procedural syntax, defining a set of
production rules, each consisting of an input graphical object, an
output graphical object, and an operator describing the nature of
transformation. A visualization is created by applying a series of
such rules step by step. Finally, we decouple visualization logic
from rendering, so that users can inspect and debug the graphical
objects after every operation, independent of how the objects are
rendered. We demonstrate Atlas’ expressivity through a catalog
of visualization designs, and discuss the trade-offs in its design by
comparing to state-of-the-art grammars.

2 THE ATLAS VISUALIZATION GRAMMAR

The Atlas grammar specifies how graphical objects are generated or
transformed to create visualizations. Figure 1 shows the Visualiza-
tion Object Model (VOM) that describes the hierarchical relation-
ships between graphical objects in the Atlas grammar. This object
model is derived from the unified terminology used in recent visual-
ization authoring tools [18]. At the lowest level, we have vertices
and segments, which can be used to compose mark primitives such
as rectangle, circle, line and path. A rectangle, for example, consists
of four vertices connected by four line segments. A glyph consists of
one or more marks. For example, in a box-and-whisker plot, a glyph
is composed of multiple marks (the box and the whiskers). A data
visualization typically consists of a collection of glyphs or marks,
where each glyph or mark represents a data case. A collection can
be nested, where its children are collections (e.g., small multiples).
Finally, a visualization scene can contain graphical objects such as
stand-alone marks or glyphs, axes, legends and gridlines.

Figure 1: The visualization object model (VOM) in Atlas

Unlike D3 [8] where visualization objects are represented as
Document Object Model (DOM) nodes, our VOM is independent of
any rendering context. Users can access and inspect VOM objects at
any point during the construction process without rendering them.

At the core of the Atlas grammar is a set of rules that specify how
these graphical objects are created or manipulated. We group these
rules into six high-level categories: initial setup, glyph generation,



Figure 2: Creating a diverging bar chart using the Atlas grammar

graphics-data join, visual encoding, spatial arrangement, and view
transformation. Each rule consists of four components: a descriptive
name, an input object, an output object, and parameters. We use the
following form to represent a rule, similar rule notations are used by
generative grammars in linguistics [9] and shape modeling [14]:

name(parameters) : input object ; output object

In this section, we describe representative rules in each of these
categories, and discuss the design of the corresponding application
programming interfaces (APIs) in Atlas.js, a JavaScript implementa-
tion of the grammar. We will use the diverging bar chart in Figure
2g as an example to ground our discussion. This chart visualizes a
hypothetical dataset reporting people’s opinions on a subject matter,
broken down by age (below 30, 30 - 50, 50 - 70, above 70) and
responses (strongly agree, agree, disagree, strongly disagree). The
data table consists of three columns: age, response, and pct (per-
centage of people with a particular response within an age group).
Listing 1 shows the code that generates this chart using Atlas.js.

Listing 1: Using Atlas.js to generate a diverging bar chart
1 let scn = atlas.scene(),

2 dt = await atlas.csv('survey_response.csv');
3 let rect = scn.mark('rect', {top:100, left:200, width:700,

height:30});

4 let coll = scn.repeat(rect, dt, {field:'age'});
5 coll.layout = atlas.layout('grid', {numCols:1, vGap:10});
6 let bars = scn.divide(rect, dt, {field:'response',

orientation:'horizontal'});
7 rect = bars.firstChild;

8 scn.encode(rect, {field:'pct', channel:'width'});
9 let palette = {'Strongly agree':'#1e71b8', 'Agree':'#7799cf',

'Disagree':'#e29d6f', 'Strongly disagree':'#da7c43'};
10 scn.encode(rect, {field:'response', channel:'fillColor',

mapping:palette});

11 let agreeBars = scn.find([{field:'response', value:'agree'}]);
12 scn.align(agreeBars, 'right');
13 let text = scn.mark('text', {fillColor:'white'});
14 scn.repeat(text, dt);

15 scn.encode(text, {field:'pct', channel:'text'});
16 scn.affix(text, rect, 'x');
17 scn.affix(text, rect, 'y');
18 scn.axis('y', 'age', {orientation:'left', x:200,

ruleVisible:false, tickVisible:false});

19 scn.legend('fillColor', 'response', {x:750, y:100});
20 atlas.renderer('svg').render(scn, 'svgEle');

Figure 3: Rules for graphics-data join: repeat, divide, and densify .
Here each input mark is joined with three (3) unique field values.

2.1 Initial Setup
In Atlas, the first steps of creating a visualization involve setting up
a scene and importing data (:= means “defined as”):

createScene() : ; scene

importData() : ; datatable := fields and tuples

In these two rules, no input object is required. Similar to the
other visualization grammars, Atlas assumes the imported data is
in a tidy tabular format [22], where the rows represent data tuples
and columns represent fields or data attributes. A data table can be
used across multiple scenes. In atlas.js, these two rules are defined
as functions in the atlas namespace (Listing 1, lines 1 and 2).

2.2 Glyph Generation
To create a mark, users specify the mark type and properties, no
input object is required (| denotes “or”):

createMark(type, properties) : ; mark := rect | circle | line | path

One or more marks can be grouped to create a glyph. Charts like
the box-plot or the bullet chart use a glyph that consists of multiple
primitive marks (+ means one or more):

createGlyph() : mark+; glyph

In Atlas.js, these rules are defined as methods in the Scene class
(Listing 1, line 3). The created marks or glyphs (e.g., rect) are
JavaScript objects, independent of rendering contexts.

2.3 Graphics-Data Join
The rules specifying graphics-data joins are a major difference that
sets Atlas apart from the other visualization grammars. Figure 3
illustrates three rules for joining graphics with data:

repeat(field) : glyph | collection ; collection

divide(field,orientation) : mark ; collection

densify(field,orientation) : mark ; polyline | polygon

The repeat rule applies to any glyph and replaces it with a collec-
tion of glyphs, each glyph in the collection represents a unique value
in the optional field parameter. If unspecified, a glyph is created
for every tuple (row) in the data table. All the tuples having the
same field value are joined with each corresponding glyph as its
data scope [12]. For example, in Listing 1 line 4, we are repeating a
rectangle by the age field. Since there are four unique age values in
the data (below 30, 30 - 50, 50 - 70, above 70), we get a collection
of four rectangles (Figure 2b). The data scope of the first rectangle
is all the rows with “below 30” as the age value, and so on and so
forth. The repeat rule applies to a collection as well, replacing it
with a nested collection. This rule works in the same way as the
repeat operator in the Data Illustrator framework [12].

The divide rule splits a mark into a collection of smaller marks.
The output object type depends on the mark type and the orientation
parameter. For example, applying divide on a circle along the



angular orientation produces a collection of pies (Figure 3), and
along the radial orientation produces a collection of rings. The
graphics-data joining mechanism is similar to that of the repeat rule:
tuples sharing the same field value are assigned as the data scope of
each corresponding mark in the output collection.

The densify rule adds vertices along the border of a mark, and
replaces curve segments with line segments. A line, for example,
is replaced by a polyline; and a circle is replaced by a standard
polygon (Figure 3). The graphics-data joining mechanism is similar
to that of the repeat rule and the divide rule. Each vertex represent
a unique value in the field parameter. The divide and densify rules
are inspired by the partition operator in Data Illustrator [12] and the
densify command in ArcGIS [3]. The partition operation in Data
Illustrator produces inconsistent output object types for different
marks (e.g., partitioning a line results in a single polyline while
partitioning a rectangle results in a collection of rectangles). By
splitting the partition operator into two different rules, we enhance
the expressivity and clarity of the grammar.

Concatenating these graphics-data join rules will produce nested
structures. For example, in Listing 1, we first repeat a rectangle
by age (line 4), and divide all the generated rectangles by response
(line 6, Figure 2c). In toolkits like D3 [8], to perform the second
divide operation, we need first to select all four rectangles in the
collection coll generated by repeat. In Atlas.js, since these rules are
defined as methods in the Scene class, users only need to pass in
any rectangle in coll as an example. Our implementation will find
in the scene all the other three peer marks generated by repeat and
perform divide on each of them accordingly.

2.4 Visual Encoding
Visual encoding is a central operation in data visualization, mapping
abstract data values in a field to visual channel properties. The Atlas
grammar requires users to clearly specify which graphical objects
(vertices, segments, glyphs, or collections) an encoding rule applies
to, as it is possible to map data to the visual channels of multiple
types of graphical objects in a visualization design:

object := vertex | segment | glyph | collection

encode(field,channel) : object ; encoding

In Atlas.js, the encoding rule is also implemented as a method in
the Scene class. Users only need to provide a graphical object as
an example, and the encoding will be applied to all its peers. For
example, we can encode the pct field as the width of rectangles
(Listing 1 line 8), and encode the response field as the fill color with
self-defined color mappings (line 9 and 10, Figure 2d). Based on the
field’s data type and the current visual properties of the graphical
objects, our implementation automatically creates a scale (i.e., a
function that transforms domain data values into a range of visual
property values). The encoding rule returns an encoding object,
which encapsulates the scale, allowing for further manipulation such
as customizing domain and range.

By default, the same scale is used for all the peer graphical objects
in the same scene. In visualizations with nested structures, e.g., a
trellis plot of bar charts, sometimes it is beneficial for each bar chart
to have its own scale. Atlas thus defines a variant of the encoding
rule, which returns an encoding object for each group of objects:

encodeInGroup(field,channel) : object ; [encodings]

2.5 Spatial Arrangement
Mapping data to the position channels (i.e., x and y coordinates) is a
common way to arrange graphical objects spatially. In addition to
such encodings, Atlas supports algorithmic layouts and graphical
constraints since many visualization designs employ these mecha-
nisms to position objects [16]. For example, after repeat, we apply
a grid layout to position the rectangles vertically with the vGap
parameter set to 10 pixels (Listing 1 line 5):

coll := collection

gridLayout(rows,cols,hGap,vGap) : coll ; coll.children.position

When a divide is performed, Atlas will apply a default layout to
the resulting collection depending on the mark type. For example,
dividing a rectangle will also apply a stack layout to the generated
smaller rectangles (Listing 1 line 6, Figure 3).

stackLayout(orientation) : coll ; coll.children.position

In Atlas.js, layout objects are created using functions in the atlas
namespace (Listing 1 line 5), the same layout object can be applied
to multiple collections.

In addition to algorithmic layouts, Atlas supports graphical con-
straints that specify object positions. The alignment constraint makes
sure the anchors of objects are arranged in a straight line:

objects := glyphs | collections

align(anchor) : objects ; objects.position

In Figure 2g, we have a vertical baseline separating the blue bars
from the orange bars, representing the divergence of opinions. To
achieve this spatial arrangement, we can either align all the light blue
bars to the right, or all the light orange bars to the left. The Scene
class in Atlas.js provides a method to find graphical objects matching
a list of filtering predicates. In this case, we find all the light blue
bars by their shared field value (Listing 1 line 11). Alternatively, we
can also find the same set of bars by their shared fill color. With
the bars identified, line 12 applies an alignment constraint (Figure
2e). Due to the graphics-centric and procedural nature of Atlas, it
is easy and flexible to specify such spatial arrangements. In other
approaches, similar designs often require data transformations [4].

Another type of constraint is the affixation constraint, which
specifies the position of one object relative to a reference object:

object := glyph | collection

affix(channel,anchor,offset) : (object, refObject) ; object.position
In Figure 2g, we have a set of white labels affixed to the center of
each bar. This is achieved by creating a collection of text marks,
encoding the field pct as the text content, and applying affix con-
straints to position the text marks at the center of the rectangles
(Listing 1 lines 13-17, Figure 2f). Here, the optional anchor and
offset parameters are not provided and default to center and 0.

2.6 View Transformation
The final rule category is view transformation, where geometric
transformation (e.g., rotate, zoom, skew) is applied to an entire
scene. The Polar transformation rule, for example, converts Carte-
sian coordinates into polar coordinates.

polar(center) : scene ; vertices.coordinates

The Scene class in Atlas.js also provides methods to create axes and
legends. Users only need to specify the channel, field and preferred
properties such as position and visibility (lines 18-19). All the
objects discussed so far are JavaScript objects in Atlas.js, which can
be printed to the console. To display these objects, we need to create
renderers. In Listing 1 line 20, we create an SVG renderer and use it
to render the scene in an SVG element with the id “svgEle”. Atlas
supports rendering using WebGL as well.

A catalog of visualization examples created using Atlas.js is
available at https://atlas-vis.github.io/gallery.html.

3 DISCUSSION

Any visualization grammar needs to consider and make trade-offs
between expressiveness, conciseness, extensibility, explainability
and learnability. We discuss how Atlas fares along these dimensions
by comparing it to three state-of-the-art grammars and toolkits:
Vega-Lite [19], Vega [6] and D3 [8].

In terms of static visualizations, the expressiveness of Atlas in its
current form is comparable to that of Vega-Lite. Atlas supports most
examples in Vega-Lite’s gallery except maps, horizon graph, and
visualizations with variable stroke widths. Meanwhile, the violin

https://atlas-vis.github.io/gallery.html


Figure 4: The process of creating Radar Chart and Stellar Chart both showing adjusted monthly gasoline sales in the U.S. in 2020.

plot, radar plot, stellar chart and ridgeline plot are supported by Atlas
but are missing from Vega-Lite’s gallery. Atlas’ graphics-centric
approach also offers flexibility in creating nested visualizations with
custom layouts (e.g., multiple bar charts positioned by data [2]) and
infographics (e.g., [1] ). Further evaluation is needed to confirm
if such designs can be created using Vega-Lite. Atlas does not
yet have built-in support for statistical abstractions, however it is
possible to perform such calculations using JavaScript and visualize
the results using Atlas. Vega-Lite goes beyond static charts and
supports interactive behavior, which is currently absent in Atlas.

All the designs discussed so far can be created using D3 and Vega.
In addition, these two libraries support more diverse examples such
as tree and network visualizations. Atlas is thus less expressive than
D3 and Vega, but it is more concise. Most of Atlas’ examples require
less than 30 lines of code, and 43 out of 50 examples in the current
gallery are realized in no more than 20 lines of code.

Atlas addresses the extensibility issue through a graphics-centric
approach, where users directly modify graphical objects in the scene
graph. For example, a radar chart is composed by (1) creating a
circle mark, (2) performing densify operator to turn the circle into
a polygon, and (3) binding the radial distance channel with data
(Figure 4). To create a stellar chart, which is arguably better than
a radar chart [13], there is no need to introduce a new star mark.
We can simply insert new vertices between each pair of vertices in
the radar chart with a fixed radial distance (Figure 4). Similarly, to
create a violin plot, no definition of a new violin mark is necessary.
Users can densify a rectangle to get an area mark and combine it
with a box plot glyph. Atlas thus enables us to compose complex
glyphs from primitive marks.

Atlas defines its own visualization object model (VOM) based on
the unified terminology from recent authoring tools [18], while D3
relies on the document object model (DOM). Whether the custom
VOM or the DOM is more advantageous depends on context [8]. For
proficient web developers, leveraging the DOM as the scene graph
abstraction allows them to use their prior knowledge; but for novices,
learning the VOM may be easier than mastering the DOM and the
associated technology stack including SVG and CSS. The custom
VOM enables flexible rendering to either SVG or WebGL with the
same code that constructs a visualization; while it is possible to use
D3 to render visualizations to an HTML canvas, significant efforts
are required from users.

Finally, the step-by-step authoring process in Atlas potentially
makes learning and debugging easier since the user could review
intermediate results and locate the problems. We acknowledge that
this claim is speculative and needs to be validated through empirical
studies.

4 RELATED WORK

Grammar-based Procedural Modeling. In computer graphics,
procedural grammars are often used to create complex objects and
scenes such as buildings, cities, plants and terrains. In architectural
modeling, the generative process starts with an initial shape, and a
shape grammar defining production rules that replace a shape by a
new set of shapes [14, 15, 24]. For example, the repeat rule takes

a shape as input and produces a tiling of shapes along the speci-
fied x or y axis; the split rule divides a facade into a set of smaller
components [14]. Applying these rules iteratively can quickly gen-
erate complex models with rich details. While such shape gram-
mars are predominantly used in architectural domains, Karnick et
al. proposed a shape grammar for glyph-based geographic visualiza-
tions [10]. We propose a procedural grammar for a broader range of
glyph-based data visualizations.
Visualization Grammars. Atlas adopts a procedural and graphics-
centric approach in grammar design. Unlike existing visualization
grammars [5, 6, 19, 21] which use textual specifications, Atlas con-
structs visualizations through stepwise operations. Developers are
thus able to inspect and debug intermediate visualization states.
To enable such procedural construction processes, Atlas takes a
graphics-centric approach by letting developers apply production
rules on graphical objects including geometric primitives, marks,
groups and collections. This approach entails that we need to design
data-graphics join and layout operations differently compared to
existing visualization grammars. Sections 2.3 and 2.5 elaborate on
these differences.
Protovis and D3. Protovis argues that to improve accessibility,
designers should be able to think in terms of graphical marks, not
abstract specifications [7]. D3 allows users to directly manipulate
graphical marks by leveraging the document object model (DOM)
[8]. Similarly, Atlas adopts a graphics-centric approach. It differs
from Protovis by explicitly formulating a set of grammatical rules
with clearly defined graphical input and output. Unlike D3, Atlas
defines its own visualization object model instead of using the DOM,
hence decoupling visualization logic from rendering technologies.
Visualization Authoring Frameworks. The grammatical rules in
Atlas are directly informed by recent visualization authoring frame-
works and tools [18]. Specifically, the graphics-centric approach in
Atlas is consistent with the lazy data binding philosophy in Data Illus-
trator [12], and the glyph generation rules in Atlas are derived from
the repeat and partition operators in Data Illustrator [12]; Charticu-
lator’s constraint-based layout mechanism [16] inspired the spatial
arrangement rules in Atlas.

5 CONCLUSION AND FUTURE WORK

Atlas offers a different perspective on the design of visualization
grammars that goes beyond text specification. Taking a graphics-
centric approach, Atlas synthesizes concepts and operators from
authoring tools, and integrates rule-based grammars into its design.

Several unsolved questions need to be explored as future direc-
tions. The current implementation of Atlas.js imposes certain limita-
tions on the order in which the grammatical rules are applied. For
example, the divide and densify rules must be applied after repeat;
constraints such as affix and align need to be specified after layouts.
Such restrictions should be removed in future implementations. Sec-
ondly, Atlas in its current form does not support visualizations of
trees, networks or geographic data. How the procedural and graphics-
centric approach can be extended to these visualization types is an
open question. Finally, we need to conduct studies to validate the
benefits of Atlas in terms of learnability and explainability.

https://atlas-vis.github.io/gallery.html#MultipleBarCharts
https://atlas-vis.github.io/gallery.html#DumbbellChart
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