
Mystique: Deconstructing SVG Charts for Layout Reuse

Chen Chen , Bongshin Lee , Yunhai Wang , Yunjeong Chang, and Zhicheng Liu

Fig. 1: Each pair shows an existing chart (left) and a new chart created using Mystique (right). The existing charts are produced using
a variety of tools, such as D3, Vega-lite, Mascot, PlotDB, Highcharts, and Data Illustrator.

Abstract—To facilitate the reuse of existing charts, previous research has examined how to obtain a semantic understanding of a chart
by deconstructing its visual representation into reusable components, such as encodings. However, existing deconstruction approaches
primarily focus on chart styles, handling only basic layouts. In this paper, we investigate how to deconstruct chart layouts, focusing on
rectangle-based ones, as they cover not only 17 chart types but also advanced layouts (e.g., small multiples, nested layouts). We
develop an interactive tool, called Mystique, adopting a mixed-initiative approach to extract the axes and legend, and deconstruct a
chart’s layout into four semantic components: mark groups, spatial relationships, data encodings, and graphical constraints. Mystique
employs a wizard interface that guides chart authors through a series of steps to specify how the deconstructed components map to
their own data. On 150 rectangle-based SVG charts, Mystique achieves above 85% accuracy for axis and legend extraction and 96%
accuracy for layout deconstruction. In a chart reproduction study, participants could easily reuse existing charts on new datasets. We
discuss the current limitations of Mystique and future research directions.

Index Terms—Chart layout, Reuse, Reverse-engineering, Deconstruction.

• Chen Chen, Zhicheng Liu, and Yunjeong Chang are with University of
Maryland, College Park, Maryland, United States. E-mail: {cchen24,
leozcliu}@umd.edu, ychangs2@terpmail.umd.edu.

• Bongshin Lee is with Microsoft Research, Redmond, Washington, United
States. E-mail: bongshin@microsoft.com.

• Yunhai Wang is with Shandong University, Qingdao, Shandong, China.
E-mail: cloudseawang@gmail.com.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

1 INTRODUCTION

Data visualization creators often look for and incorporate existing
visualizations in their work [1, 4], because these visualizations serve
as concrete examples that embody design ideas in terms of encodings,
visual styles, and layouts [1]. Even though numerous visualizations are
available on the online galleries of visualization languages (e.g., D3 [6],
Observable Plot [30], Vega-lite [36]) and authoring tools (e.g., Tableau
Public [41], Data Illustrator [24], Charticulator [33]), it remains a
major challenge to re-purpose these visualizations with users’ own
datasets in the chart authoring workflow [1, 3]. Users have difficulties
specifying the mappings between their data and different components
in a visualization using programming constructs provided in a language
[1,3], or they have to understand the underlying framework or grammar
in an authoring tool and create a visualization starting from an empty
canvas [35].

https://orcid.org/0000-0003-3171-0657
https://orcid.org/0000-0002-4217-627X
https://orcid.org/0000-0003-0059-6580
https://orcid.org/0000-0002-1015-2759

Researchers thus have explored how to enable the reuse of existing
visualizations without requiring users to learn a new language or start
from scratch. For example, D3 Deconstructor [16, 17] turns basic D3
charts into reusable style templates, and Chartreuse [12] supports the
reuse of infographics bar charts in Microsoft PowerPoint. A central
challenge in these works is to obtain a semantic understanding of a
chart by deconstructing its visual representation into components (e.g.,
encodings) that can be reused with a new dataset. Existing approaches
to deconstructing charts for reuse, however, are limited because of their
primary focus on chart styles instead of layouts. D3 Deconstructor [17]
extracts style templates only from basic charts (e.g., bar charts, scatter
plots), where the spatial arrangements of marks can be described using
simple data bindings. Chartreuse [12] focuses on glyphs with visual
styles only in bar charts with simple layouts. As a result, complex
visualizations such as small multiples and charts with nested layouts are
not supported. In addition, existing approaches for chart deconstruction
often require that charts are created using specific tools like D3.js [6] or
PowerPoint [12], further limiting the range of reusable visualizations.

To address these limitations, we extend existing work and investigate
how to deconstruct SVG (Scalable Vector Graphics) charts for layout
reuse. We selected SVG as the input format for two reasons: (1) it is
a tool-agnostic standard image format for 2-dimensional graphics and
is supported in most charting libraries and systems, allowing abundant
sources of reusable charts and (2) unlike raster images where the visual
marks need to be segmented and extracted, every mark in an SVG chart
is specified as an individual SVG element [25].

We started our investigation with the Beagle dataset [2], which sam-
ples online SVG charts and analyzes their distributions. We found that
line-, circle-, and pie-based charts all have only a few variants (Tab. 1)
and their layouts are simple in that positions of marks are usually de-
termined by data bindings. Furthermore, they are supported in most
charting tools as reusable templates. It was also observed that charts
composed of other marks like area and polygon account for a small
portion (≈5%). Thus, the benefits of deconstructing and reusing these
charts are marginal. In contrast, charts composed of rectangles encom-
pass many more chart types and afford expressive and diverse designs
regarding chart layouts. The layouts of many rectangle-based charts
are determined by multiple factors beyond simple data binding. For
example, the positions of the bars in Fig. 1d are determined by the
stacking of the bars and the vertical placement & alignment of bar
groups; the position of a rectangle in Fig. 1g depends on its position
within the corresponding bar group, whose position encodes data.

In such cases, it is often difficult to identify and specify the different
factors determining the layout, yet few charting tools offer these charts
as standard templates. To the best of our knowledge, no work has
examined how to tease apart underlying factors that jointly determine
these chart layouts for reuse. We thus focus on rectangle-based charts
because they present interesting research challenges and offer benefits
to users who want to create similar charts without having to learn a
new visualization framework or language. Specifically, we seek to
answer the following two research questions. RQ1: How can we
deconstruct rectangle-based SVG charts into layout components that
jointly determine marks’ spatial positions? RQ2: How do we apply the
deconstruction result from an SVG chart to a new dataset for reuse?

To answer RQ1, we introduce mixed-initiative chart deconstruc-
tion by combining automated algorithms with user input. Starting with
the automatic extraction of axes and legend, we provide an interface for
a user to correct any mistakes in the extraction results through simple
interactions. A hierarchical clustering algorithm then decomposes the
main chart content into four semantic components that determine the
chart layout: grouping, spatial relationships, encodings, and graph-
ical constraints. Compared to previous approaches [10, 12, 17], our
approach works on SVG charts with nested or bespoke structures that
are created by a wide range of visualization tools, and can handle errors
and uncertainties in the deconstruction pipeline.

To answer RQ2, we propose guided chart reuse through a wizard
interface. The reuse process starts with the user importing a dataset,
where its compatibility with the example chart is checked. A wizard
interface then guides the user through a series of steps to specify map-

Table 1: Types and percentages of charts composed of lines, circles,
pies, arcs, rectangles, and other marks in the Beagle dataset [2].

Mark Chart Percentage

Rectangle bar chart (histogram), grouped bar chart, stacked bar chart, diverg-
ing bar chart (pyramid chart), Marimekko chart, heatmap, bullet
chart, treemap, waffle chart, waterfall chart, range chart, gantt
chart, matrix chart, cartogram, calendar chart

32.85%

Line line graph, parallel coordinates, Kagi chart 30.51%

Pie pie chart, donut chart 16.50%

Circle scatter plot, bubble plot, dot plot, circle packing 14.96%

Others geographic map, area chart, stream graph, chord chart, hexbin plot,
Sankey diagram, Voronoi diagram, word cloud, sunburst chart,
boxplot, network diagram, contour plot, radial plot

5.18%

pings between data attributes and visual objects or channels, which
leads to a new visualization for the user’s dataset. Furthermore, the
generated chart is in a format compatible with an existing authoring tool
(i.e., Data Illustrator [24]), enabling further interactive customization
without the need to program.

We develop these solutions in an interactive prototype, Mystique,
and evaluate the viability of our approach in two ways. We demonstrate
that our method advances the state of the art in chart deconstruction
with over 96% accuracy on 150 real-world SVG charts produced by
25 different tools, covering not only 17 chart types but also advanced
layouts such as small multiples and nested grouping. We also conduct a
chart re-production study with 12 participants to evaluate the usability
of the wizard interface. The participants were able to create new charts
in a few minutes with Mystique by reusing the charts given to them.

2 RELATED WORK

2.1 Chart Reuse Approaches
To create new charts, previous studies on visualization designers’ prac-
tices [4, 44] suggest that it is more natural to change existing graphics
than to start from scratch. Templates are generally recognized as a user-
friendly way to create charts, especially for beginners. In traditional
template-based systems, templates are created by system developers
and they usually suffer from limited expressivity and quantity. Previ-
ous research thus has investigated how to turn existing visualizations
into reusable templates without involving developers. For example,
D3 Deconstructor [16, 17] works on basic charts created using D3.js;
iVoLVER [27] extracts data from charts and updates them with new
data; Ivy [26] supports turning JSON-based declarative specifications
into parameterized templates; Chen et al. [10] use deep learning to
extract timelines from infographics as templates; and Chartreuse [12]
supports reusing infographics bar chart templates.

Overall, D3 Deconstructor and Chartreuse are the closest work to
Mystique. D3 Deconstructor only takes charts created using D3 [6],
which have the source data embedded, and Chartreuse primarily works
on Microsoft PowerPoint graphics assets. In contrast, Mystique works
on visualizations in the general SVG format, does not require access to
underlying data, and supports more advanced layouts.

2.2 Chart Understanding and Deconstruction
Making a visualization example reusable requires understanding and
deconstructing visualizations. Various automated or semi-automated
methods have been proposed to detect marks [10, 48] as well as axes
and legends [11, 40], classify chart types [37, 40], and extract data
[16, 17, 20, 25] and visual encodings [12, 16, 17, 31, 32]. Due to the vast
space of visualization examples, these methods typically narrow the
scope by focusing on specific glyph or chart types.
Mark Detection. Many approaches assume that input visualizations
are in a raster image format, where object detection is essential. For
example, GlyphCreator [48] focuses on circular glyphs, and uses deep
learning to perform object and bounding box detection. Similarly,

visual elements in timeline infographics can be identified using deep
learning [10]. OCR is typically used to recognize text elements [31].
Since our input format is SVG, mark detection is not necessary.
Axis and Legend Detection. Simple heuristics [32, 40] or supervised
learning [31] can be used to extract axes and legends. However, these
methods can still be error-prone. Since it is relatively easy to indicate
where the axes and legends are, some tools expect users to provide such
information [32]. Mystique uses heuristics to find axes and legends,
and provides a user interface for authors to correct potential mistakes.
Data Extraction. Previous work also addressed extracting data values
from visualization images [20, 37] or vector graphics [16, 17, 25]. In
Mystique, we demonstrate that a chart can be effectively reused without
recovering the original data. Thus, data extraction is not necessary.
Extraction of Visual Encoding and Spatial Arrangements. Inferring
a visual encoding concerns the identification of relevant visual channel,
data type, and potentially scale type. For glyphs with regular shapes
(e.g., rectangles), visual encodings can be inferred using heuristics
by combining information from mark type and axis [31]. For custom
glyphs (e.g., those used in infographics), sometimes the positions are
not strictly encoded by data, but instead determined by specific spatial
relationships or constraints. In these cases, current approaches usually
classify charts into a predefined set of spatial arrangements [10, 12].
In Mystique, we break down the spatial arrangement of a chart into
semantic components to handle more complex layouts.
Chart Type Classification. Previous work also tackled the chart type
classification problem. Most approaches are based on a simple chart
taxonomy that roughly corresponds to mark types. For example, Revi-
sion [37] classifies chart images into 10 categories using SVM: area, bar,
line, map, Pareto, pie, radar, scatter plot, table, and Venn diagram. This
taxonomy is used in subsequent neural network-based methods [20,31].
In this work, we decided not to classify mark or chart types because
such taxonomies are inadequate to capture the richness and variations of
visualization design. Instead, we deconstruct charts into finer-grained
semantic components.

3 OVERALL APPROACH AND USAGE SCENARIO

3.1 Challenges and Processing Pipeline
We identify two main challenges in understanding and reusing SVG
chart layouts. First, the semantic information such as mark attributes
and hierarchical grouping in SVG specifications are not reliable. As
we examined online SVG charts from different sources, we found that
a majority of them were not readily usable. The following observations
characterize the uncertainties in semantic structures: (1) Inconsistent
SVG Element Types: the same mark type may be represented using
different types of SVG elements. For instance, we have observed in
multiple examples that a rectangle mark is represented using a <path>
element, and an axis is drawn as a thin rectangle. Thus, we cannot
determine the mark type based on the SVG element type; (2) Missing
Absolute Positions: absolute positions of elements in a chart are cru-
cial for determining their graphical roles and spatial relationships. But
in many cases, an element’s position is not expressed in absolute coor-
dinates. Instead, the positions are often described using transformations
such as “translate” or the matrix function; (3) Noise in Scene Graph:
it is not trivial to distinguish visualization marks from graphical objects
that are not part of the main visualization, which include off-screen
tooltips, transparent or white rectangles serving as backgrounds, and
random watermarks drawn with <path> elements; and (4) Arbitrary
Grouping of Elements: the grouping of elements can be unpredictable.

For example, grouped bar charts created using different tools exhibit
vastly different grouping structures, and axis labels can be either within
one group or in their own individual groups [9].

Second, the schematic congruency [35] between user’s data and an
example’s layout structure is not guaranteed: the data may be formatted
or structured in a way that cannot be readily applied to an extracted lay-
out. To reuse the layout, users may face two obstacles: conceptualizing
the expected data layout and implementing the transformation [45]. Pre-
vious work (e.g., Falx [45]) has demonstrated the possibility of using
program synthesis to automatically infer the required layout and trans-
form the input data. Such an approach removes the need to perform data
transformation, but still requires the data to be in a tidy format [46]. It
is thus likely only going to work on input data that can be automatically
morphed using the predefined data transformation operations in the
system. If the system cannot find a feasible data transformation process
(e.g., when the input data is not in a tidy format), users would have no
clue what went wrong and how to intervene.

To address these two challenges, Mystique adopts a pipeline (Fig. 2)
for extracting and reusing layouts. The pipeline consists of the fol-
lowing stages: pre-processing raw SVGs (Sec. 4), detecting axis and
legend information with a user correcting axis and legend detection
mistakes (Sec. 5), deconstructing the chart content into semantic com-
ponents that jointly determine the chart layout (Sec. 6), generating
chart reuse steps after checking data compatibility (Sec. 7), and finally
the user specifying how these components map to data to create a visu-
alization with new data. While the user collaborates with the system
throughout the process, Mystique strives to minimize their effort and
required skills. The pre-processing stage handles inconsistent element
types, missing absolute positions, and noise in SVG specifications;
the mixed-initiative stages of axis & legend detection and chart de-
construction handle arbitrary grouping of elements; and the pipeline
includes a step to help users understand expected data layout through
auto-generated sample data and compatibility checking. Users can get
a clear idea of what the input dataset should look like, and prepare
the data either from scratch or by transforming an existing dataset.
Mystique does not directly address the issue of implementing the trans-
formation. By treating data preparation as a separate stage, Mystique
can be used in conjunction with interactive data transformation tools
like Data Wrangler [21], Tableau Data Prep [42], and Trifacta [43],
which can support a wide range of idiosyncratic input data.

3.2 Usage Scenario

In this section, we illustrate the pipeline and how a user interacts with
Mystique using a treemap grouped bar chart [14] as an example. The
complete reuse process is presented on our demo website, https:
//mystique-vis.github.io. The chart uses a hybrid layout design,
where the overall grouped bar chart representation shows trade values
in different years, with the bar height encoding the total value. Within
each bar, a two-level treemap shows the proportion contributed by each
country, colored and grouped by continent. Currently, the only way to
create a chart of such bespoke layout is to program using libraries like
D3, and it requires deep D3 expertise and significant time to modify
the code for a new dataset. In contrast, Mystique enables the reuse of
such chart on new datasets with simple interactions. Mystique does not
require the user to learn a new language or framework. It only expects
the ability to understand the chart.

With the treemap bar charts loaded, the user sees the automatically
detected axis and legend information including labels and data types
in the result panel (Fig. 3a). Since Mystique does not guarantee 100%

deconstruct
chart content

detect axis &
legend

verify axis &
legend

automated human input

pre-processed
SVG example

specify
mappingsaxis & legend

chart content
new chart

axis & legend

chart content

check data
compatibility

axis & legend

generate
reuse steps

sample dataset
reuse steps

axis & legend

layout components

layout components
pre-

processingraw SVG
example

Fig. 2: The end-to-end pipeline for reusing an SVG chart to create a new chart in Mystique.

https://mystique-vis.github.io
https://mystique-vis.github.io

(a) Result panel for axis & legend detection. Errors can be fixed through simple
interactions (e.g., in the figure the user is dragging “1985” from the chart to a
higher-level label box).

(b) Sample data generated by Mystique for the treemap grouped bar chart
example.

(c) Mystique’s reuse UI consists of 1) Canvas, 2) Reference Panel, 3) Dataset Compatibility Panel, 4) Step Indicator, 5) Instruction Panel, and 6) Data Table
Panel.

Fig. 3: (a) result panel for axis& legend detection; (b) a sample dataset provided by Mystique; (c) the reuse UI consisting of six components.

accuracy, it allows the user to fix potential detection errors through
simple interactions. Once the user has verified the detection results,
Mystique analyzes the semantic structure of the main chart content,
synthesizes data requirements as well as chart reuse steps, and then
prepares a wizard interface that guides the users to reuse the example.

The user first sees the original chart displayed at the bottom left as
a reference (Fig. 3c 2). The Canvas (Fig. 3c 1) initially shows the
same chart without any axis or legend information, so that the visual
representation can be updated with new data. The interface also shows
a guideline on the minimum number of categorical and quantitative
data columns required to reuse the example (Fig. 3c 3). The user can
download a sample dataset (Fig. 3b) which helps them understand the
expected data format. After the user uploads their own dataset about
product sales, which is shown in the Data Table Panel (Fig. 3c 6),
Mystique generates an ordered set of steps to reuse the chart in the
Step Indicator (Fig. 3c 4), and highlights the steps that have been
completed so far. At each step, the Canvas highlights different parts
of the visualization to solicit user specification (Fig. 3c 1), and the
user chooses the visual channel and data field for mapping through
drop-down menus (Fig. 3c 5). The visualization updates based on the
user’s operation at every step. The user can always go back to previous
steps by clicking the Back button in the Step Indicator.

Mystique starts by asking what the highlighted highest-level group in
the Canvas should represent in the new dataset (Fig. 3c 5): everything
but this group fades into the background. The user selects a value from
the “Category” attribute, resulting in three highest-level groups with
labels from the “Category” attribute shown in Fig. 3c 1 . The user
clicks on the “Next” button in the Step Indicator to proceed. Mystique
then highlights the first treemap bar and asks what this subgroup should
represent (Fig. 4a); similar to the previous step, the user selects a value
from the “Subcategory” attribute, which leads to two subgroups updated
with labels (Bookcases and Chairs) from the “Subcategory” attribute.
Mystique next highlights the yellow-colored group of rectangles in the
first treemap bar and asks what it should represent (Fig. 4b); the user
selects a value from the “Region” attribute, resulting in four packed
groups of rectangles (previously there are six) of distinct colors that
correspond to four regions within each product subcategory. In the
following step, Mystique highlights the first rectangle and asks what
it should represent (Fig. 4c); the user selects a value from the “Order
ID” attribute, resulting in the system populating rectangles, one for
each distinct order ID. After that, Mystique starts handling encodings.
Mystique first guesses that the height of each treemap bar encodes
“Sales”, which is accepted by the user. Mystique continues to infer
that the “fill” channel of each rectangle is mapped to “Sales,” which is

(a) (b) (c) (d)

Fig. 4: (a) subgroups mapped to “Subcategory”; (b) color-based groups mapped to “Region”; (c) rectangles mapped to “Order ID”; (d) the final chart
with all encodings applied. To save space, we only show the part of the chart representing Furniture (the remaining part is updating similarly), and (d)
is further cropped vertically to more clearly show the changes in rectangle size and layout.

undesired, thus the user changes ‘Sales” to “Regions.” Mystique further
suggests that the “area” channel of each rectangle is mapped to ‘Sales,”
resulting in the final visualization shown in full opacity (Fig. 4d). The
user can export the chart and import it into Data Illustrator [24] for
further customization such as axis range and color scheme.

4 SVG PRE-PROCESSING

Since real-world SVG charts are messy and far from ready to be reused,
we perform the following preprocessing tasks to clean up a given chart.
Converting to JSON Representation. The XML format used in the
SVG charts is not very amenable to processing and inference. We thus
first convert the given chart into a JSON object, recording attribute-
value pairs for each element. We also record additional information
such as each element’s parent. In cases marks’ visual styles (e.g., stroke
color) are stored in their parent groups, we record these styles as the
marks’ attributes.
Obtaining Absolute Position. To calculate the absolute position of
each element, our SVG parser applies an element’s transformation (if
any) to its children elements. The transformations can accumulate
across multiple levels and the parser will iteratively update the transfor-
mation until reaching a leaf node.
Identifying and Filtering Rectangle Marks. To capture rectangle
marks represented as <path> elements, we run a rectangle test for each
<path> element. This test parses the d attribute of the <path> element,
records the vertices on this path, and determines whether the vertices
are forming four corners of a rectangle. A <path> element that passes
this test is converted into a rectangle element in the JSON object, and
its attributes are updated accordingly. We perform similar tests for lines
represented as paths. Our parser also excludes dummy rectangles, such
as transparent rectangles and rectangles with zero height and width.

5 AXIS AND LEGEND DETECTION

We develop heuristics to detect axes and legend in a chart based on the
relative positioning of marks, texts, and lines. For example, an axis
area typically consists of a set of text labels, a set of small ticks close to
corresponding labels, and an axis line spanning the vertical or horizontal
range of the ticks; a legend area can be either a set of horizontal or
vertical [mark, text] pairs (the discrete case) or a gradient-colored
bar associated with ticks and numbers (the continuous case). The
accuracy of the heuristics is reported in Sec. 8.1, and the supplementary
materials1 contains more details.

The heuristics don’t guarantee 100% accuracy, and thus we build
a user interface in Mystique to allow fixing potential errors through
simple interactions. The user interface consists of two areas: the chart
area displaying the original SVG example, and the result panel under
the chart area (Fig. 3a). The result panel includes three sub-panels:
x-axis, y-axis, and legend, showing the extracted labels, respectively.
The background colors of legend labels indicate the color mappings
extracted from the legend. Mystique also infers the data types for the x-
and y-axis, which are displayed in the form of a drop-down menu.

Five kinds of detection mistakes have been observed: missing some
labels (M1), false-positive axis labels (M2), missing higher-level la-
bels (M3), missing axis or legend (M4), false-positive axis or leg-
end (M5). To enable users to fix these mistakes, we enable the follow-
ing features: (1) drag-and-drop over chart texts into or out of the result
sub-panels (M1–3); (2) the buttons right to the label display boxes
that add display boxes for higher-level labels (M3); (3) the buttons
left to the label display boxes to activate a region select tool for users
to select an area that covers the missing axis or legend (M4); (4) the
drop-down selections left to the label display boxes, which allow users
to remove false-positive axis or legend (set to “none”) and modify axis
label data type (M5).

6 DECONSTRUCTING CHART LAYOUT

After axes and legend are correctly identified, Mystique removes them
from the scene graph and deconstructs the main chart content.

1All the supplementary materials are available at https://osf.io/pt3yq/

6.1 Semantic Components: GREC
To understand and decompose a chart layout, one potential way is to
classify the chart based on a fine-grained taxonomy with categories.
We decided not to take this approach for three reasons. First, a chart
might not clearly fit into a predefined type; for example, the chart in
Fig. 3c 2 integrates elements from a treemap and a grouped bar chart
into a single design. Second, charts can have nested structures (e.g.,
small multiples) and thus require deconstruction into multiple instances
of the same chart type. Finally, knowing the fine-grained chart type is
still not enough to reuse its layouts; for instance, given a stacked bar
chart, we still need to obtain information such as the orientation of the
stacked relationship and the distance between the groups. Therefore,
we decided to deconstruct a chart into the following four types of se-
mantic components that jointly reflect its layout: grouping (G), spatial
relationships (R), encodings (E), and graphical constraints (C).
Grouping (G) refers to the hierarchical clustering of rectangles that
reflects the semantic structure of the visualization. We make a fur-
ther distinction between two kinds of groups: collection and glyph.
Rectangles in a group in the diverging stacked bar chart (Fig. 1d) are
placed in a horizontal stack relationship, and they represent different
data cases; in contrast, rectangles in a group in the bullet chart (Fig. 1c)
are placed according to some graphical constraints (i.e., left and middle
aligned) and they represent the same data case. We refer to the former
type of group a collection and the latter a glyph, based on the unified
terminology used in recent visualization authoring tools [35] and the
visualization object model used in the Mascot grammar [23].
Spatial Relationships (R) estimate the relative placement and organi-
zation of same-level rectangles or groups. Mystique currently supports
three types of relationships: grid, stack, and packing (Fig. 5).

number of rows, number of columns
row gap, column gap
horizontal gravity, vertical gravity
direction (e.g., left to right, top to bottom)

orientation
gap

Grid Stack Packing

gravity

(a) Grid (b)
Stack

(c) Packing

gap

Fig. 5: Three types of spatial relationships (grid, stack, and packing) and
their parameters in Mystique.

Encodings (E) specify the mapping between data attributes and visual
properties of rectangles or groups.
Graphical Constraints (C) enforce requirements (e.g., data-related
alignment) on the spatial arrangements of rectangles or groups. For
example, in Fig. 1d, all the gray rectangles representing “Neither agree
nor disagree” are aligned in the center. The primary difference between
a graphical constraint (C) and a spatial relationship (R) is that the
former can transcend groups and be applied to selected marks only,
while the latter computes the positions of all the children in a group
using an iterative algorithm. In certain cases, aspects of a spatial
relationship may be similar to graphical constraints. For instance, in
Fig. 1e, multiple collections of vertically stacked bars are organized as
nested groups in a grid relationship, the contents of which are aligned
by the bottom. Mystique treats such an alignment as a relationship
parameter (called “gravity”), not as a constraint.

Consider the layout of the treemap grouped bar chart in Fig. 3c.
Excluding the axes and grid lines, the main chart area can be described
as 4 high-level groups (G), each representing a year, arranged in a
grid relationship with 1 row and 4 columns (R). Within each group,
two sub-groups (G) of rectangles, representing Imports and Exports,
are arranged in a grid relationship with 1 row and 2 columns (R).
Within each subgroup, six sub-subgroups (G) in distinct colors are
arranged in a packing relationship (R), each of which is composed of
rectangles arranged in a packing relationship (R). The height of the bars
representing Imports or Exports encodes the total trade value (E), the
area of the rectangles encodes the trade value (E) for a certain country,
and the color of the rectangles encodes the continent (E). In this chart,
there are no spatial graphical constraints. This GREC model is based
on the Mascot visualization framework [23], and the four components
correspond to the outputs of four grammatical rules: glyph generation,
graphics-data join, visual encoding, and spatial arrangement.

https://osf.io/pt3yq/

1 2 3 4 5 6 7 8

1 HS X X X VG X X

2 HS HS X X X X X

3 X HS HS X X X X

4 X X HS HS X X X

5 X X X HS X X X

6 VG X X X X HS X

7 X X X X X HS HS

8 X X X X X X HS

1 2 3 4 5

6 7 8

1 2 3 4 5 6 7 8 9 10
1 HS, P X X X P P P X X

2 HS, P HS, P X X X X P X X

3 X HS, P HS, P X X X P P P

4 X X HS, P HS, P X X X X P

5 X X X HS, P X X X X P

6 P X X X X HS, P X X X
7 P X X X X HS, P HS, P X X

8 P P P X X X HS, P HS, P X

9 X X P X X X X HS, P HS, P

10 X X P P P X X X HS, P

1 2 3 4 5

6 7 8

1 2 3 4 5 6 7 8 9 10
1 -1 -1 -1 X X X X X X
2 -1 -1 -1 X X X X X X
3 -1 -1 -1 -1 X X X X X
4 -1 -1 -1 -1 X X X X X
5 X X -1 -1 X X X X X
6 X X X X X -1 -1 -1 X
7 X X X X X -1 -1 -1 X
8 X X X X X -1 -1 -1 -1
9 X X X X X -1 -1 -1 X
10 X X X X X X X -1 X

1 2 3

5

6 7 8

HS (Horizontal Stack) HS (Horizontal Stack)

1 2 3 4 5 6 7

1 X X VG X X X

2 X X X X X X

3 X X X X X X

4 VG X X X X X

5 X X X X X X

6 X X X X X HS

7 X X X X X HS

1 2 3
4 5

6 7

4

9 10

not found not found

9 10

(a) diverging stacked bar chart (b) Marimekko chart (c) bullet chart (d) gantt chart

relationship candidates [HS] [HS, P] [] []
common relationship

distance matrix on rectangles

merging rectangles 2 collections of HS:
C1=[1, 2, 3, 4, 5], C2=[6, 7, 8]

2 collections of HS:
C1=[1, 2, 3, 4, 5], C2=[6, 7, 8, 9, 10]

2 glyphs:
G1=[1, 2, 3, 4, 5], G2=[6, 7, 8, 9, 10]

1 collection with position encoding:
C1=[1, 2, 3, 4, 5, 6, 7]

1 2

1 VG

2 VG

VG (Vertical Grid) VS (Vertical Stack)
[VG] [VS] [VG]

1 collection C3=[C1, C2] of VG 1 collection C3=[C1, C2] of VS

1 2

1 VS

2 VS

1 2

1 VG

2 VG

1 collection C1=[G1, G2] of VG

VG (Vertical Grid)

N/A (only 1 group)

relationship candidates
common relationship

distance matrix on groups

merging groups

N/A (only 1 group)

N/A (only 1 group)

final hierarchy

Fig. 6: Chart decomposition process for four different chart segments. The matrix cells store the results from the distance function for each pair of
rectangles or groups. Since the matrix is symmetrical, the gray cells do not have to be computed. HS (VS) stands for horizontal (vertical) stack,
HG (VG) stands for horizontal (vertical) grid, P stands for packing, -1 means overlapping rectangles, and X means null.

6.2 Group and Spatial Relationship Detection
We decided to jointly detect groups and spatial relationships because
the inference of a group and the spatial relationship (if any) in a group
are inextricably linked. On the one hand, a relationship would be an
effective criterion to decide whether a set of rectangles form a group;
on the other hand, uncertainties may be involved if we try to infer the
relationship without a complete set of rectangles from a group. For this
task, we have considered multiple approaches.

We experimented with an SVM model [29] trying to predict if a gap
between a pair of rectangles constitutes a boundary between groups,
but the results were not satisfactory (the results are included in the sup-
plementary materials). Another candidate, the decomposition approach
in Chartreuse [12], is not directly applicable because this method was
primarily designed for clustering customized infographics glyphs. It is
also unclear if it works on charts with nested structures.

Our final solution is a customized bottom-up hierarchical clustering
algorithm [28] to capture the semantic groups of rectangles. Generally,
hierarchical clustering starts by treating each object as an individual
cluster, and combines pairs of clusters until one final cluster containing
all objects is formed. Applying this approach to our problem, the
clustering algorithm consists of two steps: inferring the lowest-level
groups and spatial relationships based on pairwise information for
the rectangle marks (Sec. 6.2.1), and iteratively merging groups to
complete a nested structure (Sec. 6.2.2). In this process, two major
components need to be determined: a distance function D that computes
how closely related two rectangles or two groups are, and a linkage
function K that merges objects into hierarchical clusters based on the
distance information. We design these functions by taking into account
the semantics of grouping in data visualization. To avoid overfitting
and improve generalizability, we develop and tune the algorithm on a
training chart set, and evaluate the algorithm on a separate test chart set
(details in Sec. 8.1). The pseudo-code for the algorithm is included in
the supplementary materials.

6.2.1 Lowest-Level Groups and Spatial Relationships Detection
The algorithm starts with detecting the lowest-level spatial relationships
and groups. We use local spatial relationship information, instead of a
numerical value only, to characterize how related two rectangles are.

Distance Function. We define a distance function D that takes a pair
of rectangles as input and outputs one or more relationship categories
that can describe their spatial relationship. D supports five relationship
categories: stack (with orientation and gap), grid (with orientation and
gap), packing (with gap), overlapping, and null. We use the following
criteria to decide between the stack, grid, and packing relationships:
for all three, the rectangles should not overlap; grid and stack require
that the union of the two rectangles’ bounding boxes do not intersect
with any other rectangle (e.g., pairs (1,2) and (1,6) in Fig. 6a 1), and
packing is applicable when a universal gap parameter exists regardless
of orientation (i.e., the gap between any neighboring rectangles is
constant). Thus, D rules out the packing relationship once inconsistent
gaps are observed (e.g., (1,2) and (1,4) in Fig. 6d 1).
Linkage Function. To merge rectangles into lowest-level groups, a
linkage function K computes the following:
1. Construct Distance Matrix (Fig. 6 1). K first computes the rela-
tionship categories for every pair of rectangles using D, and stores the
results in a matrix. To accommodate noises of mark positioning in SVG
charts and increase robustness, some small thresholds for relationship
parameters (Fig. 5) are adopted (details in the supplementary materials).
Figure 6 1 illustrates the matrix results for four different charts. Since
the matrix is symmetrical, we only need to compute fewer than half of
the entries (shown as white cells). Cells with red labels indicate either
overlapping rectangles (-1) or no applicable relationships (X).
2. Extract Common Relationship (Fig. 6 2). K finds if a common
spatial relationship exists in the distance matrix. For instance, HS
(horizontal stack) appears in all rows in Fig. 6a 1 , which means that
for every rectangle, there exists at least one other rectangle that can be
paired with it to form a horizontal stack relationship. In cases like the
Marimekko chart (Fig. 6b) and a Pyramid chart, multiple relationship
candidates are available (the latter case has both the grid and stack
relationships in common) and lead to different final groups. To choose
the common relationship, stack is given priority over grid or packing.
In all other cases only one candidate exists.
3. Merge Rectangles into Low-level Groups (Fig. 6 3). Given the
common relationship L, K randomly picks an initial pair of rectangles
satisfying L and merges them into a collection C. It then looks for other
rectangles that can be added to C without breaking L. This iterative

clustering continues until no new rectangles can be found. K then
proceeds to find other lowest-level collections until all rectangles are
assigned, requiring that collections do not overlap with each other.
In cases where no common relationship was found but overlapping
rectangles exist (e.g., in Fig. 6c, rectangles 1-5 and rectangles 6-10
form two glyphs), K uses the −1 values in the distance matrix to
cluster overlapping rectangles to form lowest-level glyphs. At this
point, since the lowest-level groups are complete, the algorithm calls
the distance function D again to examine the lowest-level groups to
update and augment L with more details like gravity. If no common
spatial relationship was extracted in the second step and no glyph was
found, or the requirement of non-overlapping groups was violated,
L groups all rectangles together and infers that the position of each
rectangle encodes data (Fig. 6d).

6.2.2 Iterative Group Merging
After all the lowest-level groups are found, we start recursively merging
these groups into higher-level groups by checking potential higher-level
relationships between groups. Similar to Sec. 6.2.1, the algorithm first
constructs a distance matrix recording potential relationship informa-
tion for all possible group pairs using Dg (Fig. 6 4), extracts a common
relationship from the matrix (Fig. 6 5), and finally merges the groups
into higher-level groups using Kg (Fig. 6 6). Dg and Kg share the same
logic with D and K, respectively, where the only difference is the input
objects. We recursively apply this process until ending up with a single
collection of groups containing all rectangles or termination during this
process (i.e., no relationship is found or collections of groups overlap).

For example, in both Fig. 6a and Fig. 6c, the distance matrix for
groups is

(
null V G
V G null

)
; thus a higher-level vertical grid relationship is

found, and two lowest-level groups are merged into one. In Fig. 6b,
the distance matrix for groups is

(
null V S
V S null

)
, leading to a higher-level

group with a vertical stack relationship. In Fig. 6d, all rectangles are
encoding-based and clustered into one group; thus there is no need to
proceed to higher-level handling. The final decomposed hierarchies are
shown in Fig. 6 7 .

6.3 Encodings Inference
Encodings for Groups. In cases where the iterative group merging
described in Sec. 6.2.2 aborts (which means several groups sharing the
same semantic structure are found but they cannot be merged further to
form higher-level hierarchies), Mystique collects these groups to make
the final grouping result and marks their x and y positions as encoded
with data; e.g., the small-multiples bar chart (Fig. 1g).
Encodings for Rectangles. Mystique considers six visual channels of
a rectangle mark in encoding detection: x, y, width, height, f ill, and
area. Table 2 summarizes our inference rules. When the lowest-level
groups are glyphs, Mystique applies the rules for width/height and x/y
to extract encodings for each set of corresponding rectangles (e.g., four
bars of the same color across groups in Fig. 1c).

Table 2: Each visual channel is considered to be encoding data if the
corresponding condition is met.

Channel Condition

fill rectangles in the chart content have different fill colors

area lowest-level spatial relationship is packing

width/height lowest-level spatial relationship is grid or stack, and rectan-
gles have varying widths/heights

x/y lowest-level spatial relationship is a one-directional grid
without the gravity parameter

6.4 Graphical Constraints Detection
Information regarding graphical constraints is recorded during the chart
deconstruction. Mystique currently checks and records two kinds of
graphical constraints: (1) the alignment constraint within a glyph (e.g.,

the gray and blue rectangles in a glyph are left and middle aligned in
Fig. 6c) and (2) any customized alignment of stacked bars in a grid
relationship (e.g., Fig. 1d). The former is important when rendering a
new glyph-based visualization in the reuse UI because the alignment
constraints within glyph groups are not automatically enforced by spa-
tial relationships. The latter is usually data-dependent; for instance, the
stacked bar groups in Fig. 6a are aligned so that all the rectangles repre-
senting “Neither agree nor disagree” share the same center coordinate.
Since such information have to be provided by the user with a new
dataset, Mystique only records the alignment constraint based on the
fill color property, and asks the user to provide data-related constraint
specification during the reuse stage.

7 DATA COMPATIBILITY AND STEP GENERATION

7.1 Data Schema Inference
To mitigate the risk of example misuse, Mystique infers data schema
from the deconstructed semantic components. First, Mystique calcu-
lates Cgroup, the number of categorical data fields required to gener-
ate the grouping structure: each level in the deconstructed grouping
structures corresponds to a unique categorical field. For instance, the
diverging stacked bar chart in Fig. 1d has a two-level nested structure
which requires at least two categorical fields.

Mystique also infers the number of categorical fields (Cencode) and
the number of quantitative fields (Qencode) required for encodings. The
number of encoded channels is used as the number of data fields, and the
data field types are obtained through the extracted and user-corrected
axis and legend information. Since it is possible that the same field may
be used to generate grouping structures and encode visual channels
(e.g., response type in Fig. 1d), Mystique uses max(Cgroup, Cencode) as
the minimum number of categorical fields.

Based on this analysis, Mystique generates a sample dataset for a
given example (Fig. 3b). It tries to find data values for each field based
on axis and legend labels. If such data is not available, the field values
are generated as random strings or numbers. The sample dataset is
then created as the permutation of all the field values. Mystique also
displays a guideline on the minimum numbers of categorical fields
and quantitative fields in the Dataset Compatibility Panel in the reuse
UI (Fig. 3c), and checks if the dataset satisfies this requirement when-
ever a new dataset is imported. Mystique issues a popup-dialog warning
whenever the requirement is not met. Since users may use the same
field to encode multiple channels, Mystique does not enforce the data
schema as a strict rule and users can dismiss the dialog.

7.2 Generating Reuse Steps
Based on the deconstruction results, Mystique generates a sequence of
data mapping steps that guide users toward the creation of a new chart.
The steps are arranged in the following order: (1) mapping groups to
categorical or date fields, from the highest level to the lowest level,
(2) mapping rectangle marks to categorical or date fields, (3) choosing
visual channels and data fields for size, position, area and fill encodings.

As mentioned in Sec. 6.3, by default Mystique chooses x/y as the
channels for position encodings, and width/height as the channels for
size encodings. In some visualization designs, however, position and
size encodings can be interchangeable and the distinction between the
two may not be clear-cut. Consider the range chart in Fig. 1b, it applies
position encodings to the top segment and the bottom segment of each
rectangle, which represent the daily maximum and minimum tempera-
ture respectively. However, it is also reasonable to infer the presence
of a size encoding, where the height encodes the temperature range.
In such ambiguous cases, Mystique is unable to clearly distinguish
between position and size encodings. It thus provides multiple possi-
ble visual channels (e.g., top side, bottom side, and height) through a
drop-down menu for users to specify which channel should be used.

To update the visualization result at every step, we use Mascot.js (pre-
viously known as Atlas.js [23]) as the underlying library. Its graphics-
centric and procedural design enables displaying intermediate visualiza-
tions incrementally, so that users can evaluate whether they are on the
right track. The demo website showcases the results of reusing a variety
of example charts, as a demonstration of Mystique’s expressiveness.

8 EVALUATION

8.1 Evaluation of Deconstruction Algorithm

Chart Corpus. A chart corpus is essential for developing and evaluat-
ing reuse algorithms and tools. Based on our scope described in Sec. 1,
we first considered the rectangle-based charts in Beagle [2]. However,
we found that its distribution over chart types is unbalanced: a majority
of the charts are simple bar charts and histograms. Furthermore, the
corpus contains charts created by only five tools, which is insufficient
to capture the differences in SVG representations across different tools
to achieve tool-agnostic reuse. Therefore, we decided to collect our
own corpus. Instead of prioritizing the quantity of charts, we sought
to promote distribution balance and chart diversity in terms of layout,
SVG representation (which is associated with the tool that produced
the example), and visual style (e.g., colors theme and decoration).

We started with the chart designs in Beagle (which were mostly cre-
ated using D3), then referred to online catalogs such as the Chartmaker
Directory [8], which maintain comprehensive chart taxonomies and
tools for each chart type. For each rectangle-based chart type in the
catalogs, we sampled examples with design variations (e.g., different
orientations, alignments, and axis positions) produced by different tools.
We used two methods to obtain the SVG representations of these exam-
ples. We downloaded the SVG elements, if available, and re-created
examples using Charticulator [33] and Data Illustrator [24] when ex-
amples are available only in demo videos or in raster images (e.g.,
Figma charts & infographics [13]). Finally, we browsed D3 galleries
including bl.ocks.org [5] and Observable [30] to identify and download
bespoke designs that do not fall into predefined chart categories. The
final collection, shown in Fig. 7, consists of 150 SVG charts produced
by 25 tools, encompassing 17 chart types, 7 small multiple designs,
3 superimposed views, and 9 bespoke designs. The supplementary
materials contain the 150 charts and figures showing details on the
distributions of chart design in Beagle and our corpus.

amcharts

anychart

apexch
arts

chartblocks

chartic
ulator

d3

data illu
stra

tor

datylon

diagrammm
flourish

fusioncharts

ggplot2

google ch
arts

graphiq

highcharts

illu
stra

tor
jetpack

masco
t
plotdb

plotly qlik

quadrigram
rgraph

vega

zing ch
art

bespoke
bullet chart

calender chart
cartogram

cohort chart

diverging bar chart
gantt chart

grouped bar chart
heatmap

marimekko chart
matrix chart
range chart

simple bar chart
small multiples

stacked bar chart
superimposed views

tower chart
treemap

waffle chart

waterfall chart

0
1
2
3
4

Fig. 7: Distribution of the 150 examples by chart design and tool.

Axis & Legend Detection Accuracy. On the 150 SVG charts, Mys-
tique achieves 86.67%, 85.33%, and 90.67% accuracy on the x-axis,
y-axis, and legend inference, respectively. The supplementary materials
contain detailed illustrations about the errors. All the detection errors
can be corrected using the interactions described in Sec. 5.
GREC-based Chart Deconstruction Accuracy. Before developing
the deconstruction algorithm (Sec. 6), we split our dataset into 105 train-
ing and 45 test charts (a standard 7:3 ratio [15]) to avoid over-fitting and
promote generalizability. We ensured that this 7:3 split is approximately
maintained for both chart types and visualization tools. We designed
and fine-tuned our algorithm based only on the training set. The de-
construction algorithm achieves 96.19% (= 101/105) accuracy on the
training set and 95.56% (= 43/45) accuracy on the test set. Specif-
ically, the algorithm fails in three cases where multiple charts (e.g.,
the superimposed bar charts in Fig. 8a) or marks (e.g., the treemap
in Fig. 8b) are overlaid on top of one another. Among the remaining
three error cases, two represent rectangles using <line> elements with
large stroke-width values which is rarely seen; it also interferes with

the cases where large-stroke-width <line> elements represent axis
lines, hindering our pre-processing method from accurately handling
such cases. The remaining error case is due to relatively large gaps (6
pixels) between neighboring rectangles in a treemap—our threshold
hyper-parameter for the gap parameter in a packing relationship is 5.
These error cases are included in the supplementary materials.

(a) (b)

Fig. 8: Mystique cannot detect overlapping groups: (a) two superim-
posed bar charts, (b) a treemap where country rectangles are on top of
continent rectangles.

Algorithm Efficiency. For each chart in the test set, we also recorded
the time of main chart content decomposition. All the examples can be
deconstructed within one second, except a heatmap created with Vega,
which consists of more than 8K marks. The supplementary materials
include detailed performance data.

8.2 Chart Reproduction User Study
To evaluate whether users can understand and follow the guidance from
Mystique to reuse existing charts and produce new ones, we conducted
a chart reproduction study [34].
Participants and Procedure. We recruited 12 participants (5 male, 7
female) from the Washington metropolitan area. The statistics on how
often they create data visualizations are as follows: Never (1, 8.3%),
A few times per year (4, 33.3%), A few times per month (5, 41.7%),
and A few times per week (2, 16.7%). The tools they have used are
Excel (6, 50.0%), Tableau (6, 50.0%), D3.js (5, 41.67%), ggplot2 (3,
25.0%), Vega/Vega-Lite (2, 16.7%), Figma (1, 8.3%), and Others (4,
33.3%).

All the study sessions were conducted remotely on Zoom and each
lasted about 1 hour. After a brief explanation of the study goal, we
walked the participants through two sets of tutorials. The first set was
on the UI for fixing axis and legend detection errors. The participants
learned what kinds of errors could happen, and how to fix them through
interactions. The second set of tutorials taught the participants about
the workflows to reuse a simple bar chart and a grouped bar chart. The
tutorials lasted about 25 to 30 minutes. The participants then were
asked to complete four visualization creation tasks, reusing one chart
for each task, with Mystique. At the end of the session, each participant
completed a questionnaire, and we conducted a debriefing regarding
their experiences using Mystique. Each participant was given a $15
gift card as a token of appreciation.
Tasks. We used a bullet chart (Fig. 1c) for Task 1, a grouped stacked
bar chart (Fig. 1e) for Task 2, a diverging stacked bar chart (Fig. 1d) for
Task 3, and a range chart (Fig. 1b) for Task 4. We chose these four charts
to cover the major types of axis/legend detection errors: Task 2 requires
adding a missing higher-level x-axis; Task 4 requires adding a missing y-
axis; and Tasks 2 and 3 require changing incorrectly inferred field types.
The four tasks also cover different semantic components with varying
complexity in terms of nesting structures: Task 1 involves glyphs
composed of multiple rectangles, whose positions are constrained; Task
2 has three levels of nesting; Task 3 involves the alignment constraint
across collections; and in Task 4, the top and bottom segments of each
rectangle encode data. For each task, we explained the input example
chart, provided the participants with a new dataset, and described the
schema and meaning of the new dataset. The participants were not
shown any charts they need to create, only text descriptions of the target
charts. Not to prime the participants or make the tasks too easy, we
deliberately avoided mentioning visual channels in the instructions. For
instance, the requirement for Task 4 is phrased as: “Please create a
visualization of the dataset. Each bar represents a day’s temperature

range, from minimum to maximum temperature. The color represents
the average temperature in the day.”
Results. All participants produced a visualization for all the tasks, but
5 out of 48 visualizations were not what the requirements asked for.
The participants completed each task within five minutes on average,
with Tasks 2 and 4 taking longer (Tab. 3): Task 2 involves three nesting
levels, and Task 4 involves multiple combinations of the visual channel
and data field. The participants rated their experience of using Mystique
on a 5-point Likert scale (1: “Strongly Disagree” to 5:“Strongly Agree”)
in the post-study questionnaire. The results are as follows: efficiency,
µ = 3.92 σ = 1.04; convenience regarding accommodating changes,
µ = 4.58, σ = 0.49; and comfort/confidence, µ = 4.25, σ = 1.01.

Table 3: The number of participants completing each task successfully,
and the average completion time with standard deviation.

Task # Successes Average Time (minutes) Standard Deviation

1 11 2.87 1.62

2 11 4.35 2.47

3 11 2.86 2.40

4 10 4.96 2.20

We identified three main reasons why the participants failed to pro-
duce the correct visualization. First, some participants misunderstood
the instructions. For instance, P3 produced a chart with three nested
levels for Task 2, but the order of nesting was incorrect. He had trouble
interpreting the instruction: “The visualization should show the sales
distribution for each region grouped by product category and subcat-
egory.” Second, some participants did not understand the meanings
of certain visual channels, particularly for Task 4. For instance, P4
stated that “some sentences and words are not really clear for me. For
example, there was a sentence where I can choose left-side, right-side
[which were unclear].” Finally, one participant forgot that the visual
channels were configurable too. After we reminded her, she could
quickly create the desired chart during the debriefing.

Participants’ experience in creating data visualizations affected their
performance in completing tasks. Among the four participants who did
not complete all tasks, three create visualizations “a few times a year,”
and one “never” specifically created visualizations. It was harder for
them to follow the instructions from Mystique.

We also recorded the number of times participants clicked on the
Back button to review previous steps. The average values for the
tasks are 1.08, 1.42, 1.08, and 4.08, respectively. For the first three
tasks, most participants were able to operate very close to the optimal
strategies, i.e., without going back. For the last task (a range chart),
most participants more frequently used the Back button, trying to find
the correct mappings between visual channels and data fields.

Overall, participants were satisfied with the usability of Mystique.
P8 stated that “it makes new visualizations with my dataset very easily
by taking an example visualization found somewhere and adjusting the
visualization. Also, it is very intuitive.” P8 also commented on the non-
programming authoring process: “It is a very interesting tool and useful
for people who have no interest in programming. It might be useful for
quick prototyping for visualization ideas.” P1 liked Mystique’s wizard
interface: “Mystique gives a response after each step so I know whether
I am on the right track, while in Python I cannot imagine what chart I
am getting when writing codes there.”

Participants also suggested several aspects for improvement. First,
the guidance information in the Instruction Panel can be conveyed more
clearly, e.g., P8 mentioned “it was hard to understand what x position
exactly means in Task 4” and P6 commented “the terms were too
difficult to understand. It was hard to find what they meant exactly (top
side, bottom side, height, etc.).” Second, since customization is done
after exporting the chart and not included in the study, the participants
wanted the reuse UI to support fine-tuning: “one improvement could be
to allow more flexibility; for instance, currently there is no option for
selecting the color used in the chart” (P7).

9 DISCUSSION, LIMITATIONS, AND FUTURE WORK

Composite Designs. The current deconstruction algorithm in Mystique
cannot fully handle composite visualizations [18] involving superim-
position (e.g., Fig. 8), juxtaposition, overloading, and nesting. Future
work needs to extend the deconstruction algorithm or devise new meth-
ods to handle composite designs. For instance, given a design consisting
of multiple views, we first need to dissect it into multiple visualizations.
It remains to be seen how existing techniques on decomposing complex
figures [19, 22, 38] perform on real-world SVG visualizations.

Handling More Deconstruction Errors. Mystique handles the po-
tential errors and uncertainties in encoding detection by letting users
choose the correct visual channel from a drop-down menu. As future
work expands the scope to handle more complex charts like composite
designs, it is expected that more errors will arise in the deconstruction
process. How to support the user’s understanding and provide ways to
correct these errors remains an open problem. The challenge here is to
minimize the requirement of the users’ knowledge of abstract concepts
and operations related to the GREC-component model. To do so, we
need to have a thorough understanding of the error space, and then
devise representation and interaction mechanisms to let users provide
input in ways they can understand and perform.

Algorithmic Layouts. Currently Mystique is unable to detect vari-
ants of the packing relationship. For instance, Mystique cannot tell
apart a squarified treemap layout [7] from a spatially ordered treemap
layout [39, 47]. Even if such layout differences are known, the underly-
ing library Mascot.js cannot reproduce the required layout yet. More
investigations are necessary to accommodate those cases.

Corpus Generalizability. We manually collected the corpus for eval-
uation to ensure diversity [9], but the corpus size is small and may
not be sufficient for further investigations of alternative deconstruction
and reuse methods (e.g., neural network models). The corpus can be
augmented in the following two aspects to support future research:
(1) incorporating charts composed of other types of marks to enhance
diversity and expressiveness and (2) for each chart type, increasing the
number of charts evenly across different tools/sources.

Additional Features. Beside the research challenges outlined above,
Mystique can benefit from a few feature enhancements. The user study
revealed that people wanted to customize the design while performing
the reuse steps (e.g., categorical label ordering, the color set in the leg-
end). Such functionality can be integrated into the reuse UI. Handling
bespoke axis design is another potential future improvement. Mystique
currently generates simple axes automatically based on detected axis
information, and needs to support customizations such as label format-
ting, flipped axis, and dual axes (e.g., Fig. 1(h)). Finally, the visual style
information of an online SVG chart sometimes is not embedded inside
the SVG file, but stored in the web page or even a separate style sheet.
Capturing such visual styles is currently a manual process. We expect
that a future version of Mystique can support the automatic capturing
of SVG charts and associated visual styles with simple interactions
directly in the browser.

10 CONCLUSION

Reusing existing charts with layouts determined by multiple factors has
the potential to significantly transform the process and experience of
visualization authoring, further lowering barriers to crafting bespoke
charts. In this paper, we contribute Mystique, an interactive tool that
brings us closer to realizing that potential. Mystique automates axis &
legend detection and chart deconstruction, and asks for minimal human
input to fix detection errors and specify data mappings. We demonstrate
that our mixed-initiative deconstruction approach can achieve above
96% accuracy on charts with diverse layouts and designs. In addition,
a chart reproduction study with 12 participants demonstrates that the
guided process in Mystique’s wizard interface is easy to follow and
removes the need to learn a new language or framework. We outline
research challenges and opportunities for future work, including broad-
ening the scope to composite designs and enhancing Mystique with
additional features.

ACKNOWLEDGMENTS

Chen Chen and Zhicheng Liu were supported in part by NSF grant IIS-
2239130, and Yunhai Wang was supported by NSFC (No. 62132017,
62141217) and Shandong Provincial Natural Science Foundation (No.
ZQ2022JQ32).

REFERENCES

[1] H. K. Bako, X. Liu, L. Battle, and Z. Liu. Understanding how Design-
ers Find and Use Data Visualization Examples. IEEE Transactions on
Visualization and Computer Graphics, 29(1):1048–1058, 2023. doi: 10.
1109/TVCG.2022.3209490 1

[2] L. Battle, P. Duan, Z. Miranda, D. Mukusheva, R. Chang, and M. Stone-
braker. Beagle: Automated Extraction and Interpretation of Visualizations
from the Web. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, pp. 594:1–594:8. ACM, Montreal, 2018.
doi: 10.1145/3173574.3174168 2, 8

[3] L. Battle, D. Feng, and K. Webber. Exploring D3 Implementation Chal-
lenges on Stack Overflow. In 2022 IEEE Visualization and Visual Analytics
(VIS). IEEE, Oklahoma City, 2022. doi: 10.1109/VIS54862.2022.00009 1

[4] A. Bigelow, S. Drucker, D. Fisher, and M. Meyer. Reflections on How
Designers Design with Data. In Proceedings of the 2014 International
Working Conference on Advanced Visual Interfaces, pp. 17–24. ACM,
Como, 2014. doi: 10.1145/2598153.2598175 1, 2

[5] M. Bostock. bl.ocks.org, 2021. https://bl.ocks.org/. 8
[6] M. Bostock, V. Ogievetsky, and J. Heer. D³ Data-Driven Documents. IEEE

Transactions on Visualization and Computer Graphics, 17(12):2301–2309,
2011. doi: 10.1109/TVCG.2011.185 1, 2

[7] M. Bruls, K. Huizing, and J. J. Van Wijk. Squarified Treemaps. In Data
Visualization 2000: Proceedings of the Joint EUROGRAPHICS and IEEE
TCVG Symposium on Visualization, pp. 33–42. Springer, Amsterdam,
2000. doi: 10.1007/978-3-7091-6783-0_4 9

[8] Chartmaker. The chartmaker directory, 2021. http://chartmaker.
visualisingdata.com/. 8

[9] C. Chen and Z. Liu. The State of the Art in Creating Visualization Corpora
for Automated Chart Analysis. Computer Graphics Forum, 42(3):449–470,
2023. doi: 10.1111/cgf.14855 3, 9

[10] Z. Chen, Y. Wang, Q. Wang, Y. Wang, and H. Qu. Towards Automated
Infographic Design: Deep Learning-based Auto-Extraction of Extensible
Timeline. IEEE Transactions on Visualization and Computer Graphics,
26(1):917–926, 2020. doi: 10.1109/TVCG.2019.2934810 2, 3

[11] S. R. Choudhury, S. Wang, and C. L. Giles. Scalable Algorithms for Schol-
arly Figure Mining and Semantics. In Proceedings of the International
Workshop on Semantic Big Data, number 1. ACM, San Francisco, 2016.
doi: 10.1145/2928294.2928305 2

[12] W. Cui, J. Wang, H. Huang, Y. Wang, C.-Y. Lin, H. Zhang, and D. Zhang.
A Mixed-Initiative Approach to Reusing Infographic Charts. IEEE Trans-
actions on Visualization and Computer Graphics, 28(1):173–183, 2022.
doi: 10.1109/TVCG.2021.3114856 2, 3, 6

[13] Figma. Figma Charts and Infographics, 2021. https://setproduct.
com/charts. 8

[14] C. Given. A bar chart composed of treemaps. https://gist.github.
com/cmgiven/018fd027d443b177e18fffb9afcdb5bd. 3

[15] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press,
2016. 8

[16] J. Harper and M. Agrawala. Deconstructing and restyling D3 visual-
izations. In Proceedings of the 27th annual ACM symposium on User
interface software and technology, pp. 253–262. ACM, Honolulu, 2014.
doi: 10.1145/2642918.2647411 2, 3

[17] J. Harper and M. Agrawala. Converting Basic D3 Charts into Reusable
Style Templates. IEEE Transactions on Visualization and Computer
Graphic, 24(3):1274–1286, 2018. doi: 10.1109/TVCG.2017.2659744 2,
3

[18] W. Javed and N. Elmqvist. Exploring the Design Space of Composite
Visualization. In 2012 IEEE Pacific Visualization Symposium. IEEE,
Songdo, 2012. doi: 10.1109/PacificVis.2012.6183556 9

[19] W. Jiang, E. Schwenker, T. Spreadbury, N. Ferrier, M. K. Y. Chan, and
O. Cossairt. A Two-Stage Framework for Compound Figure Separation.
In 2021 IEEE International Conference on Image Processing (ICIP),
pp. 1204–1208. IEEE, Anchorage, 2021. doi: 10.1109/ICIP42928.2021.
9506171 9

[20] D. Jung, W. Kim, H. Song, J.-I. Hwang, B. Lee, B. Kim, and J. Seo. Chart-
sense: Interactive Data Extraction from Chart Images. In Proceedings of

the 2017 CHI Conference on Human Factors in Computing Systems, pp.
6706–6717. ACM, Denver, 2017. doi: 10.1145/3025453.3025957 2, 3

[21] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler: Interactive
Visual Specification of Data Transformation Scripts. In Proceedings of
the 2011 CHI Conference on Human Factors in Computing Systems, pp.
3363–3372. ACM, Vancouver, 2011. doi: 10.1145/1978942.1979444 3

[22] P.-S. Lee and B. Howe. Dismantling Composite Visualizations in the
Scientific Literature. In Proceedings of the International Conference on
Pattern Recognition Applications and Methods - Volume 2, pp. 79–91.
SCITEPRESS, Lisbon, 2015. doi: 10.5220/0005213100790091 9

[23] Z. Liu, C. Chen, F. Morales, and Y. Zhao. Atlas: Grammar-based Pro-
cedural Generation of Data Visualizations. In 2021 IEEE Visualization
Conference (VIS), pp. 171–175. IEEE, New Orleans, 2021. doi: 10.1109/
VIS49827.2021.9623315 5, 7

[24] Z. Liu, J. Thompson, A. Wilson, M. Dontcheva, J. Delorey, S. Grigg,
B. Kerr, and J. Stasko. Data Illustrator: Augmenting Vector Design
Tools with Lazy Data Binding for Expressive Visualization Authoring. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems, pp. 123:1–123:13. ACM, Montreal, 2018. doi: 10.1145/3173574.
3173697 1, 2, 5, 8

[25] D. Masson, S. Malacria, D. Vogel, E. Lank, and G. Casiez. ChartDetective:
Easy and Accurate Interactive Data Extraction from Complex Vector
Charts. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems, number 147. ACM, Hamburg, 2023. doi: 10.1145/
3544548.3581113 2, 3

[26] A. M. McNutt and R. Chugh. Integrated Visualization Editing via Parame-
terized Declarative Templates. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems, number 17. ACM, Yokohama,
2021. doi: 10.1145/3411764.3445356 2

[27] G. G. Méndez, M. A. Nacenta, and S. Vandenheste. iVoLVER: Interactive
Visual Language for Visualization Extraction and Reconstruction. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems, pp. 4073–4085. ACM, San Jose, 2016. doi: 10.1145/2858036.
2858435 2

[28] F. Nielsen and F. Nielsen. Hierarchical clustering. Introduction to HPC
with MPI for Data Science, pp. 195–211, 2016. doi: 10.1007/978-3-319
-21903-5_8 6

[29] W. S. Noble. What is a support vector machine? Nature biotechnology,
24(12):1565–1567, 2006. doi: 10.1038/nbt1206-1565 6

[30] Observable. Observable plot, 2023. https://observablehq.com/
plot/. 1, 8

[31] J. Poco and J. Heer. Reverse-Engineering Visualizations: Recovering Vi-
sual Encodings from Chart Images. Computer Graphics Forum, 36(3):353–
363, 2017. doi: 10.1111/cgf.13193 2, 3

[32] J. Poco, A. Mayhua, and J. Heer. Extracting and Retargeting Color
Mappings from Bitmap Images of Visualizations. IEEE Transactions
on Visualization and Computer Graphics, 24(1):637–646, 2018. doi: 10.
1109/TVCG.2017.2744320 2, 3

[33] D. Ren, B. Lee, and M. Brehmer. Charticulator: Interactive Construction
of Bespoke Chart Layouts. IEEE Transactions on Visualization and
Computer Graphics, 25(1):789–799, 2018. doi: 10.1109/TVCG.2018.
2865158 1, 8

[34] D. Ren, B. Lee, M. Brehmer, and N. H. Riche. Reflecting on the Evaluation
of Visualization Authoring Systems : Position Paper. In 2018 IEEE Evalu-
ation and Beyond - Methodological Approaches for Visualization (BELIV),
pp. 86–92. IEEE, Berlin, 2018. doi: 10.1109/BELIV.2018.8634297 8

[35] A. Satyanarayan, B. Lee, D. Ren, J. Heer, J. Stasko, J. Thompson,
M. Brehmer, and Z. Liu. Critical Reflections on Visualization Authoring
Systems. IEEE Transactions on Visualization and Computer Graphics,
26(1):461–471, 2019. doi: 10.1109/TVCG.2019.2934281 1, 3, 5

[36] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-Lite:
A Grammar of Interactive Graphics. IEEE Transactions on Visualization
and Computer Graphics, 23(1):341–350, 2016. doi: 10.1109/TVCG.2016.
2599030 1

[37] M. Savva, N. Kong, A. Chhajta, L. Fei-Fei, M. Agrawala, and J. Heer.
Revision: Automated Classification, Analysis and Redesign of Chart
Images. In Proceedings of the 24th annual ACM symposium on User
interface software and technology, pp. 393–402. ACM, Santa Barbara,
2011. doi: 10.1145/2047196.2047247 2, 3

[38] X. Shi, Y. Wu, H. Cao, G. Burns, and P. Natarajan. Layout-aware Subfigure
Decomposition for Complex Figures in the Biomedical Literature. In
2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 1343–1347. IEEE, Brighton, 2019. doi: 10.

https://doi.org/10.1109/TVCG.2022.3209490
https://doi.org/10.1109/TVCG.2022.3209490
https://doi.org/10.1145/3173574.3174168
https://doi.org/10.1109/VIS54862.2022.00009
https://doi.org/10.1145/2598153.2598175
https://bl.ocks.org/
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1007/978-3-7091-6783-0_4
http://chartmaker.visualisingdata.com/
http://chartmaker.visualisingdata.com/
https://doi.org/10.1111/cgf.14855
https://doi.org/10.1109/TVCG.2019.2934810
https://doi.org/10.1145/2928294.2928305
https://doi.org/10.1109/TVCG.2021.3114856
https://setproduct.com/charts
https://setproduct.com/charts
https://gist.github.com/cmgiven/018fd027d443b177e18fffb9afcdb5bd
https://gist.github.com/cmgiven/018fd027d443b177e18fffb9afcdb5bd
https://doi.org/10.1145/2642918.2647411
https://doi.org/10.1109/TVCG.2017.2659744
https://doi.org/10.1109/PacificVis.2012.6183556
https://doi.org/10.1109/ICIP42928.2021.9506171
https://doi.org/10.1109/ICIP42928.2021.9506171
https://doi.org/10.1145/3025453.3025957
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.5220/0005213100790091
https://doi.org/10.1109/VIS49827.2021.9623315
https://doi.org/10.1109/VIS49827.2021.9623315
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1145/3544548.3581113
https://doi.org/10.1145/3544548.3581113
https://doi.org/10.1145/3411764.3445356
https://doi.org/10.1145/2858036.2858435
https://doi.org/10.1145/2858036.2858435
https://doi.org/10.1007/978-3-319-21903-5_8
https://doi.org/10.1007/978-3-319-21903-5_8
https://doi.org/10.1038/nbt1206-1565
https://observablehq.com/plot/
https://observablehq.com/plot/
https://doi.org/10.1111/cgf.13193
https://doi.org/10.1109/TVCG.2017.2744320
https://doi.org/10.1109/TVCG.2017.2744320
https://doi.org/10.1109/TVCG.2018.2865158
https://doi.org/10.1109/TVCG.2018.2865158
https://doi.org/10.1109/BELIV.2018.8634297
https://doi.org/10.1109/TVCG.2019.2934281
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1145/2047196.2047247
https://doi.org/10.1109/ICASSP.2019.8683824

1109/ICASSP.2019.8683824 9
[39] B. Shneiderman and M. Wattenberg. Ordered Treemap Layouts. In

Proceedings of the IEEE Symposium on Information Visualization 2001,
pp. 73–78. IEEE, Washington, D.C., 2001. doi: 10.1109/INFVIS.2001.
963283 9

[40] S. Shukla and A. Samal. Recognition and quality assessment of data charts
in mixed-mode documents. International Journal on Document Analysis
and Recognition, 11:111–126, 2008. doi: 10.1007/s10032-008-0065-5 2,
3

[41] Tableau. Tableau Public, 2021. https://public.tableau.com/app/
discover. 1

[42] Tableau. Tableau Prep Builder, 2022. https://www.tableau.com/
products/prep. 3

[43] Trifacta. Designer Cloud Data Wrangling Software and Tools, 2022.
https://www.trifacta.com/. 3

[44] J. Walny, C. Frisson, M. West, D. Kosminsky, S. Knudsen, S. Carpendale,
and W. Willett. Data Changes Everything: Challenges and Opportunities
in Data Visualization Design Handoff. IEEE Transactions on Visualization
and Computer Graphics, 26(1):12–22, 2020. doi: 10.1109/TVCG.2019.
2934538 2

[45] C. Wang, Y. Feng, R. Bodik, I. Dillig, A. Cheung, and A. J. Ko. Falx:
Synthesis-Powered Visualization Authoring. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems, number 106.
ACM, Yokohama, 2021. doi: 10.1145/3411764.3445249 3

[46] H. Wickham. Tidy data. Journal of Statistical Software, 59(10):1–23,
2014. doi: 10.18637/jss.v059.i10 3

[47] J. Wood and J. Dykes. Spatially Ordered Treemaps. IEEE Transactions
on Visualization and Computer Graphics, 14(6):1348–1355, 2008. doi: 10
.1109/TVCG.2008.165 9

[48] L. Ying, T. Tangl, Y. Luo, L. Shen, X. Xie, L. Yu, and Y. Wu. GlyphCreator:
Towards Example-based Automatic Generation of Circular Glyphs. IEEE
Transactions on Visualization and Computer Graphics, 28(1):400–410,
2022. doi: 10.1109/TVCG.2021.3114877 2

https://doi.org/10.1109/ICASSP.2019.8683824
https://doi.org/10.1109/INFVIS.2001.963283
https://doi.org/10.1109/INFVIS.2001.963283
https://doi.org/10.1007/s10032-008-0065-5
https://public.tableau.com/app/discover
https://public.tableau.com/app/discover
https://www.tableau.com/products/prep
https://www.tableau.com/products/prep
https://www.trifacta.com/
https://doi.org/10.1109/TVCG.2019.2934538
https://doi.org/10.1109/TVCG.2019.2934538
https://doi.org/10.1145/3411764.3445249
https://doi.org/10.18637/jss.v059.i10
https://doi.org/10.1109/TVCG.2008.165
https://doi.org/10.1109/TVCG.2008.165
https://doi.org/10.1109/TVCG.2021.3114877

	Introduction
	Related Work
	Chart Reuse Approaches
	Chart Understanding and Deconstruction

	Overall Approach and Usage Scenario
	Challenges and Processing Pipeline
	Usage Scenario

	SVG Pre-processing
	Axis and Legend Detection
	Deconstructing Chart Layout
	Semantic Components: GREC
	Group and Spatial Relationship Detection
	Lowest-Level Groups and Spatial Relationships Detection
	Iterative Group Merging

	Encodings Inference
	Graphical Constraints Detection

	Data Compatibility and Step Generation
	Data Schema Inference
	Generating Reuse Steps

	Evaluation
	Evaluation of Deconstruction Algorithm
	Chart Reproduction User Study

	Discussion, Limitations, and Future Work
	Conclusion

