
Eurographics Conference on Visualization (EuroVis) 2017
J. Heer, T. Ropinski and J. van Wijk
(Guest Editors)

Volume 36 (2017), Number 3

CoreFlow: Extracting and Visualizing Branching Patterns from
Event Sequences

Zhicheng Liu1, Bernard Kerr2, Mira Dontcheva1, Justin Grover2, Matthew Hoffman1,3, Alan Wilson2

1Adobe Research 2Adobe Systems Inc. 3Google Research

Abstract
Event sequence datasets with high event cardinality and long sequences are difficult to visualize and analyze. In particular, it
is hard to generate a high level visual summary of paths and volume of flow. Existing approaches of mining and visualizing
frequent sequential patterns look promising, but have limitations in terms of scalability, interpretability and utility. We propose
CoreFlow, a technique that automatically extracts and visualizes branching patterns in event sequences. CoreFlow constructs
a tree by recursively applying a three-step procedure: rank events, divide sequences into groups, and trim sequences by the
chosen event. The resulting tree contains key events as nodes, and links represent aggregated flows between key events. Based on
CoreFlow, we have developed an interactive system for event sequence analysis. Our approach can compute branching patterns
for millions of events in a few seconds, with improved interpretability of extracted patterns compared to previous work. We also
present case studies of using the system in three different domains and discuss success and failure cases of applying CoreFlow
to real-world analytic problems. These case studies call forth future research on metrics and models to evaluate the quality of
visual summaries of event sequences.

1. Introduction

Temporal event sequences, such as application log data and web
visitor clickstreams, are valuable in helping us understand user
behavior and in informing decisions. Visualization and analysis
of event sequence data is a well-studied research area [LRTM07,
LWD∗17, MLL∗13, PW14, WZT∗16, ZDF15, ZLD∗15] but remains
an unsolved problem. Depending on the domain, a sequence dataset
can contain thousands or more distinct sequences. Each of these
sequences may consist of hundreds of ordered events. The number
of unique events can be in the hundreds or thousands. The volume
and complexity of such datasets render traditional visualization tech-
niques inadequate for effective analysis. Even when we aggregate
events into fewer categories, it is still difficult to provide a useful
overview of the paths and their volume (Figure 1).

Instead of trying to show all the events and sequences, visual
analytics researchers employ data mining methods to extract and
visualize meaningful high-level abstractions for interactive analysis
[LWD∗17, PW14, WZT∗16, WSSM12]. Frequent pattern mining,
in particular, has shown promise in extracting interpretable and
useful insights from complex event sequences [KVP16, LWD∗17,
PW14]. A frequent pattern is a set of ordered or unordered events
that frequently co-occur. Many pattern mining algorithms require a
parameter called minimum support, which specifies the minimum
number of input sequences containing the patterns. For example,
Figure 2 shows six sample sequences with 12 unique events, and
Figure 3 shows frequent sequential patterns (Here we are mining a

Figure 1: An icicle plot [KL83] visualizing 10143 events in 300
clickstream sequences. Each sequence goes from top to bottom,
where the events are represented as small rectangles. The color of
the rectangles represents event category.

type of frequent patterns called closed sequential patterns, refer to
[Bah03] for detailed definition.) extracted from the input sequences
with minimum support set to 30% (i.e. each pattern represents at
least 2 sequences).

Visualizations based on sequential pattern mining offer a visual
summary while still supporting users in drilling down to individual
sequences from the patterns [KVP16, LWD∗17]. From a human-
centered perspective, however, sequential patterns still have several
limitations in aiding the analysis of event sequences:

submitted to Eurographics Conference on Visualization (EuroVis) (2017)



2 Z.Liu et. al. / CoreFlow: Extracting and Visualizing Branching Patterns from Event Sequences

Figure 2: Six event sequences with 12 unique events (A - L). The
horizontal axis represents the timestamp (in seconds) for the events.

Figure 3: Eleven sequential patterns extracted from the input se-
quences in Figure 2 with minimum support set to 30%. The horizon-
tal position of the events represent the average time elapsed relative
to the beginning of the sequences. For example, the second pattern
shows that two sequences share the ordered events “A”, “C” and “C”,
and it takes on average 0.25 second to observe the first occurrence of
“A”. The line width represents the number of sequences containing
that pattern. For each pattern, we show the ID of the input sequences
containing that pattern.

Scalability: When the dataset is large, computing patterns is
expensive and unsuitable for interactive analysis [LWD∗17]. With
hundreds of thousands of events, the pattern mining time can take
minutes or even hours.

Interpretability: While sequential patterns are effective in reduc-
ing the number of events to be displayed, the number of patterns can
outgrow the number of input sequences, making it hard to review all
the patterns. These patterns also tend to have significant overlap. For
example, Figure 3 shows that the same sequence is often represented
in multiple patterns. It is also not clear how these sequential patterns
relate to each other, and how they fit together to provide an overview
of the data.

Utility: Finally, frequent events do not always correspond to
important or meaningful milestones, and there is little research that
evaluates how useful sequential patterns are in actual data analysis.

In this paper, we present CoreFlow, a novel technique that extracts
branching patterns from event sequences by recursively applying
the Rank-Divide-Trim three-step procedure. In the Rank step, events
are ranked using a frequency-based function. In the Divide step,
sequences are separated into two groups. Finally, in the Trim step,
the subsequences leading to the top-ranked event are removed. The
resulting branching pattern is a tree showing an overview of path
flow across frequent events in the sequences. We implement Core-
Flow and explore several visualization and interaction techniques in
the context of the CoreFlowVis system.

We evaluate our approach in terms of scalability, interpretability
and utility. Compared to approaches that mine and visualize frequent
sequential patterns, CoreFlowVis is more scalable for large datasets
with less computational time. The generated visualization presents a
unifying view of frequent events with improved interpretability. To
investigate if the branching patterns are meaningful and useful, we
conduct three case studies with domain experts. Results show that
frequency is a reasonable metric in automatically picking important
events in clickstream and media touch point analysis. We discuss the
limitations of our approach in the domain of application log analysis
and suggests future directions for further improving the system.

2. Related Work

Visualizing event sequences as trees is not a new idea. Previous work
has applied tree visualization techniques to event sequence data. FP-
Viz uses the SunBurst [SZ00] approach to represent the frequent
pattern growth tree [KSS05]. LifeFlow [WGGP∗11] and Event-
Flow [MLL∗13] apply the icicle tree visualization [KL83] to visual-
ize temporal event sequences such as health records. These systems
are effective when the number of events in each sequence is small
(e.g. less than 20), and users manually filter and aggregate events
through a user interface to simplify visualizations. These approaches
are less scalable to longer sequences where the events have high
cardinality. Recognizing these limitations, DecisionFlow [GS14]
proposes an approach similar to the rank and divide procedures in
CoreFlow. The main difference between our work and DecisionFlow
is that Coreflow tries to automatically identify key events while Deci-
sionFlow starts with user-defined milestones. In addition, CoreFlow
focuses on representing branching patterns as trees. The interactive
visualizations based on the CoreFlow technique also incorporate
several novel features including drilling down to perform pattern
extraction on tree branches.

In addition to frequent pattern mining, which we discussed in
the introduction, research on event sequence analysis and visual-
ization has also explored the potential of various sequence clus-
tering approaches. In particular, hierarchical clustering is a com-
monly used method where the results are also visualized as trees
[WZT∗16, ZBS16]. The difference between CoreFlow and hierar-
chical clustering of sequences is evident when we examine how
the trees are interpreted. In the trees generated by CoreFlow, the
nodes are events and the links represent flows between the events.
In hierarchical clustering, the nodes in the resulting hierarchy rep-
resent sequence clusters, not events. To emphasize this difference,
we choose to use the term branching pattern instead of hierarchical
pattern. A child event in a branching pattern is not a subordinate or
a member of its parent event. The tree structure only indicates that

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.



Z.Liu et. al. / CoreFlow: Extracting and Visualizing Branching Patterns from Event Sequences 3

the parent event appears earlier than the child event in the sequences.
Hierarchical clustering is better suited for tasks such as user segmen-
tation [ZBS16], while CoreFlow is useful for interactive exploration
of sequences.

Finally, CoreFlow is also inspired by works like WordTree
[WV08], which extract tree structures from text documents. Core-
Flow deals with temporal event sequences, and requires novel al-
gorithms and visualization considerations for different problem
domains.

3. CoreFlow: Extracting Branching Patterns

The design of CoreFlow is motivated by a metaphor used by ana-
lysts to describe their understanding of temporal event sequences.
If we think of each sequence as a traveler’s journey, an effective
visualization should show an overview of the important milestones
(events) along the way. Despite differences in the exact paths and
time taken, the travelers may share a few common milestones in the
earlier parts of their journeys. At reaching certain milestones, some
travelers end their journeys early, while others branch out to other
milestones and destinations.

The CoreFlow technique tries to extract branching patterns based
on this metaphor. To do so, CoreFlow recursively applies a strategy
consisting of three steps: 1) ranking the events based on a ranking
function and picking the top ranked event e, 2) dividing sequences
into two groups using e: those that contain e and those that do not,
and 3) trimming sequences containing e from the beginning to the
first occurrence of e. At each recursive call, the top ranked event
gets added to the tree as the node. The recursion stops when the
end of the sequences are reached or when the number of sequences
containing e is smaller than a pre-defined minimum support. The
minimum support is the only parameter required.

3.1. Recursive Rank-Divide-Trim: An Example

Figure 4 illustrates all the steps involved in extracting a branching
pattern from the six sample sequences shown in Figure 2. We define
a minimum support of 30% (i.e. any link in the branching pattern
should represent at least two input sequences) and use a depth-first
strategy in this example. A breath-first approach gives the same
result.

Ranking events: Starting with all the sequences, we rank the
events with a predefined ranking function. For any pair of events, the
event with a higher frequency (the number of sequences it appears
in) gets a higher rank. If two events appear in the same number of
sequences, for each event, we compute the average index of the first
occurrence of the event in the sequences. The event with a lower
average index is ranked higher. Figure 4(1) shows that “C” is the
highest ranked event in the input sequences. In using this ranking
function, we characterize the importance of an event (milestone)
using the number of sequences passing through it. Since the journeys
can be long and contain multiple milestones, we give preference to
milestones that appear earlier in the journeys.

Dividing sequences: We add the top-ranked event “C” to the tree
and use it to divide the sequences into two groups: those that contain

(1) Choose “C” as the first milestone event

(2) “C” is ranked highest again for the trimmed sequences

(3) Top ranked event appears in less than 2 sequences, stop computing for
current group

(4) “F” is the top ranked event in the two trimmed sequences

(5) Add “G” as the milestone event after “F”

(6) Top ranked event appears in less than 2 sequences, add “exit” node

(7) Perform same routines for sequences that do not contain “C”

(8) End the extraction process. All branches terminate at “exit”

Figure 4: Step-by-step process to extract a branching pattern. The
tables show top 5 events in the (sub)sequences with event name,
number of sequences containing that event, and the average index
of the event.

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.



4 Z.Liu et. al. / CoreFlow: Extracting and Visualizing Branching Patterns from Event Sequences

Figure 5: A visualization of the branching pattern extracted in Fig-
ure 4. The horizontal distance between adjacent nodes represent the
average time taken to go from the parent node to the child node. The
link width represents the number of sequences following the path,
and we annotate the links with the raw sequence IDs. The branch-
ing pattern provides a succinct overview of the input sequences.
Compared with visualization based on frequent pattern in Figure 3,
the branching pattern provides a unified view connecting frequent
events in continuous paths.

“C” and those that do not. The figure separates these two groups with
a dotted line (Figure 4(1)).

Trimming sequences: For the four sequences containing “C”, we
trim these sequences from the beginning to the first occurrence of
“C” (Figure 4(1)).

This completes the first round of the rank-divide-trim procedure.
We now have two groups of sequences: one contains trimmed se-
quences and the other contains sequences where there is no observa-
tion of the event “C”. The same procedure in 4(1) applies to each of
these sequence groups. We recursively apply the 3-step procedure
to construct the branching pattern, until one of the following condi-
tions is met: we reach the end of the sequences, or the number of
sequences containing the top ranked event in the division is smaller
than the minimum support. In these cases, we group all the trimmed
sequences into one branch, with “exit” as the terminal node. Figure
5 shows a visualization of the final branching pattern extracted. In
this example, the pattern is a binary tree, where any node has at most
two children. Depending on the dataset, this is not always the case.
The branching pattern can be a tree of arbitrary levels and branching
factor.

Algorithm 1 in the supplemental materials outlines the complete
CoreFlow technique with the three-step approach in pseudo code.

3.2. Frequency as a Metric of Event Importance

In the ranking function used in the previous section, we use fre-
quency as a primary metric for choosing events as milestones. This
decision is based on longitudinal studies with domain experts ana-
lyzing data such as web clickstreams and application logs (Section
6). While there have been no agreed-upon objective metrics for
ranking events in terms of importance, the analysts confirm that
frequency of appearance is a reasonable and commonly used metric
for choosing important events. We evaluate whether the branching

patterns generated using this approach are meaningful and useful in
Section 6.

Frequency-based ranking function can also have many variants.
For example, there are many ways to break ties when two events
appear in the same number of sequences. Instead of using average
index in the example above, we can use median index; we can also
compare average or median timestamp instead of comparing index.
We have experimented with these approaches using different real-
world datasets. In most cases, the choice does not matter because
rarely do two events share the same frequency of appearance.

In the example, we use the number of enclosing sequences (SEQ)
as the metric to rank events. If a sequence has multiple occurrences
of the same event, we count the sequence only once. There are other
frequency-based metrics such as the number of occurrences (OC-
CURRENCE) and the number of occurrences as the head of sequence
(HEAD). The OCCURRENCE ranking function gives preference to
repeating events in potentially fewer sequences; the HEAD rank-
ing function incorporates the position of events in the metric. We
experimented with these approaches using different datasets. The-
oretically, the OCCURRENCE and HEAD approaches should result
in more branches. However, we find that the actual properties of
the branching patterns depend more on the characteristics of the
dataset. The supplemental materials include statistics of the gener-
ated branching patterns in terms of number of nodes, number of
unique nodes, tree height and average branching factor.

4. Visualization and Interaction Design

We have designed and built a system called CoreFlowVis that visual-
izes branching patterns extracted using the CoreFlow technique. The
system provides user interfaces to select dataset, change parameters
such as minimum support and canvas size, and define funnels or
drill down to a link in the pattern.

4.1. Tree Visualization Design

A variety of tree visualization techniques can be applied to display
branching patterns. CoreFlowVis offers three different representa-
tions: an icicle plot (Figure 6(a)), a node-link visualization (Figure
6(b)) and a hybrid design combining features of the node-link visu-
alization and the icicle plot (Figure 6(c)). In all three visualizations,
the vertical axis represents the average number of events or the
average time elapsed since the beginning of sequences. We apply
a vertical orientation for these visualizations in order to have more
room to display event names and avoid cluttering.

In a traditional vertical icicle plot, each rectangular partition
represents a tree node, each row represents a level and the labels are
placed at the center of each partition†. It is not necessary to render
branches in the tree because all the nodes at the same level have
the same vertical position. In the CoreFlow icicle plot, the nodes
have variable vertical positions, so we need to use the partitions to
represent branches. We display branch statistics at the top of the
partition, and place the event labels at the bottom of each partition to
indicate that the bottom is where the event is first observed (Figure

† For an example, visit http://bl.ocks.org/mbostock/4347473

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.



Z.Liu et. al. / CoreFlow: Extracting and Visualizing Branching Patterns from Event Sequences 5

(a) Icicle Plot

(b) Node-Link Visualization

(c) Hybrid visualization with an icicle plot as the background of a tree

Figure 6: Three visualization designs implemented based on Core-
Flow

Figure 7: Hovering over a branch displays the most frequent events
in the branch

6(a)). The width of the partitions represents the number of sequences.
We use a sequential color scheme to indicate the level of node. The
gray partitions represent exit branches. Our final design resembles
the LifeFlow visualization [WGGP∗11], with minor differences in
terms of layout orientation and color scheme.

For the node-link visualization, initially we tried to use Buchheim
et. al.’s algorithm [BJL02] implemented in D3 [BOH11] to com-
pute the tree layout, but did not achieve satisfactory results. Since
the node position represents the average number of events or time
elapsed instead of discrete level information, the algorithm fails to
minimize edge crossings. In the end, we use the icicle layout to
position the nodes, and draw curved links between the nodes. This
layout approach also allows us to render the hybrid visualization
easily.

The analysts used the icicle plot the most because it is effective in
showing how the volume of outgoing links sums up to the number
of sequences at the parent event. It is also easy to visually compare
the volume of the branches. However, it took them some time to get
used to the icicle plot, because it was a novel representation to them.
They were more familiar with the node-link visualization, which is
effective in showing explicitly the links between events. However,
comparison is more difficult. The hybrid visualization attempts to
combine the strengths of both visualizations, but the effectiveness
is unclear. For example, in Figure 7, the same link is represented
as a rectangle and a curved path, highlighted in orange. It is a little
confusing to see the curved path cuts across other links represented
as rectangles.

4.2. Incorporating User-defined Event Importance

As noted in Section 3.2, frequent events do not always correspond
to meaningful milestones. The branching pattern generated by Core-
Flow may not always contain the events that the analysts are inter-
ested in. In actual practices, analysts may want to define a funnel
(i.e. an ordered list of milestone events), and visualize the volume

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.



6 Z.Liu et. al. / CoreFlow: Extracting and Visualizing Branching Patterns from Event Sequences

Figure 8: The analysts define a funnel consisting of two milestones:
the plans page and a completed order. CoreFlowVis highlights this
funnel in green, and displays it in the context of branching patterns.

of sequences flowing through the milestones. Such a query-driven
approach is widely used in research works [GS14,LRTM07,ZDF15]
and commercial applications (e.g. Google Analytics).

CoreFlow incorporates and augments funnel-based analysis by
giving priority to user-defined milestones and ranking the events
in the funnel higher than the other events. It is guaranteed that
user-defined milestones will appear in the branching pattern and
the visualization, even if they are not frequent. For example, in
Figure 8, the analysts would like to see the traffic volume going
through two important events: the plans page and the completed
order page. They can define the funnel in terms of this two pages,
and CoreFlow will give these two pages priority in the branching
pattern generation process. It first divides sequences using the plans
page as a milestone event. For the sequences containing the plans
page, CoreFlow ranks the completed order page highest; for the
other sequences not containing the plans page, the regular rank-
divide-trim procedure applies. Figure 8 shows the branching pattern
where user-defined event importance is incorporated. The defined
funnel is highlighted in green, showing that 37.2% of the total visits
went to the plans page, and 17.1% of the total completed an order.
Since CoreFlow incorporates user queries in the pattern extraction
process, we can also see what happens outside the funnel, as well as
major patterns of how visitors dropped out of the funnel.

When a frequent event does not correspond to an event the ana-
lysts care about, CoreFlowVis allows analysts to exclude events by
search for the event and adding it to an exclusion list. Events on this
list will be ignored during the pattern computation process.

Figure 9: Drilling down on the link “login −→ account info”. The
link is highlighted with an orange outline (left). The new branching
pattern for the subsequences in this link does not always fit within
the original partition (right).

4.3. Details on Demand and Drilling Down

To provide information on the subsequences in the branching pattern,
CoreFlow displays a tooltip when users hover over a link (Figure
7). The tooltip includes a bar chart showing the frequency of events
in the subsequences. In this figure, we see that between the start of
all sequences and the “accounts.techx.com:plans” event, the most
frequent events are the clicks on accounts homepage and techX
homepage.

The CoreFlow technique automatically generates an overview of
temporal event sequences for users to start their exploratory analysis.
In addition to examining the milestone events represented as tree
nodes and the volume of sequences passing through the milestones,
analysts can drill down to individual links of interest. Consider
Figure 5, four sequences go through “C” after the start, and the
analysts might be interested in this part of the journey and drill
down to link “Start −→ C”. The CoreFlow technique can be applied
to any link in the branching pattern, allowing effective drilling down
to the desired level of granularity. This feature is especially useful
when the dataset is large and the overview only provides a high-level
summary.

In the visualizations, users drill down to a link and compute
branching patterns on subsequences in that link by double-clicking
on the link. To display the newly computed branching pattern, we
started by experimenting with the idea of nesting the pattern inside
the original visualization to preserve context, as shown in Figure
9. This approach has two potential problems. First, the link might
have a small area and cannot display the pattern satisfactorily. This
problem can be resolved through automatic zooming to give the
new branching pattern more space. The second problem is harder
to address. Since the height of each link represents the average
time elapsed or number of events of the subsequences, when we
compute branching patterns on these subsequences in the link, some
of the links in the new pattern will have a much greater average
and outgrow the original link height. Our final design addresses
these two problem through two-stage animated transitions: 1) zoom
in so that the link of interest expands to occupy the entire canvas,
and 2) display the newly computed branching pattern in the canvas.
Figure 10 shows the branching pattern for the “checkoutLoaded
−→ validateOrder” link in Figure 6a. We render all the ancestor
nodes that lead to the current view. Users can navigate back to the
overview via a back button on the top left corner.

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.



Z.Liu et. al. / CoreFlow: Extracting and Visualizing Branching Patterns from Event Sequences 7

Figure 10: The branching pattern for the “checkoutLoaded −→
validateOrder” link in Figure 6a

Dataset1 Dataset2 Dataset3

No. of sequences 5,315 60,553 301,360
No. of events 120,777 1,491,653 5,517,395
No. of unique events 4,209 36 107,707
avg sequence length 22.73 24.63 18.31
max sequence length 186 3,174 2,500
domain web clickstreams app logs web clickstreams

Table 1: Three datasets with varying size and complexity used in
our evaluation study

5. Evaluation

To evaluate our approach, we compare CoreFlowVis to the system
by Liu et al. [LWD∗17], which offers an interactive visual summary
based on frequent sequential pattern mining (FSPM). FSPM is the
closest work to this research: the goal of both works is to support
interactive analysis of large event sequence data by providing an
automatically generated overview. We provide benchmark results
for the computation time for pattern extraction and qualitatively
compare the interpretability of the extracted patterns.

Table 1 describes the three real-world datasets we use in this
evaluation. These datasets vary in size and complexity. The number
of sequences range from thousands to hundreds of thousands, and
the number of events range from hundreds of thousands to millions.
We also vary the minimum support paramater from 5% to 20% in
computing the patterns.

5.1. Scalability

We implement the CoreFlow technique in Java. For the FSPM ap-
proach, we use the Java implementation of the vertical maximal
sequential pattern mining algorithm [FVWGT14] in the SPMF li-
brary [FVGG∗14]. Using the pattern pruning technique described
in [LWD∗17], we set the threshold value to 0.85. We run the tests on
a quad-core 2.7 GHz MacBook Pro (OS X 10.11.5) with per-core
256K L2 caches, shared 6MB L3 cache and 16GB RAM. The Java
Runtime version is 1.8.0 and we set the maximum heap size to be
8192 MB.

Figure 11 shows the benchmarking results. While the time to

Figure 11: CoreFlow scales better to larger datasets and consumes
less computation time. Due to memory limitation, we could not
compute patterns for Dataset3 using the FSPM approach. To better
display the labels and avoid overlap, we use a log scale for the y
axis representing computation time.

compute sequential patterns with FSPM decreases with increas-
ing minimum support, the computation time is not well suited for
interactive analysis. Due to memory limitations, the FSPM imple-
mentation cannot handle Dataset3, which contains more than 300K
sequences and 5.5M events. CoreFlow clearly scales better to larger
datasets and consumes less computation time. CoreFlow is able to
extract branching patterns from millions of events in a few seconds.

5.2. Qualitative Comparison of Pattern Interpretability

Computational time is an objective measure of the two techniques.
More importantly, we would like to know if the extracted patterns
are usable by human analysts. Figure 12(a) shows statistics about
the sequential patterns the FSPM approach extracted. In many cases,
the number of patterns is still overwhelming. Figure 12(b) shows the
number of nodes in the branching patterns extracted by CoreFlow.
The size of the pattern is more manageable, although with a concise
overview, certain important events may be overlooked.

To better gauge the interpretability of the patterns, we focus on
the patterns for Dataset 1 with minimum support set to 20%. Figure
13 shows the patterns discovered by FSPM and CoreFlow. While
Dataset 1 contains one month of web clickstream data for a com-
mercial website, Figure 13 shows the results of a query for visitors
who purchased a product named XPR from the website. Figure 13(b)
shows an overview that is consistent with this premise and pro-
vides summary statistics on these visitors’ behavior. For example,
a significant part of the traffic (34.8%) successfully goes through
the checkout process, where visitors validate and submit their or-
ders (highlighted in orange contour). Another 14.8% of the visitors
manage their purchased plans (highlighted in green contour). On
average, it takes fewer events to manage plans than to make pur-
chases. Figure 13(a) shows the top 12 patterns (in terms of support)

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.



8 Z.Liu et. al. / CoreFlow: Extracting and Visualizing Branching Patterns from Event Sequences

(a) The number of sequential patterns generated using the FSPM ap-
proach. We could not compute patterns for Dataset3 due to memory
limitation

(b) Statistics of branching patterns generated by CoreFlow

Figure 12: Patterns generated by FSPM and CoreFlow

mined by the FSPM approach. The visualization shows patterns
with significant overlap (e.g. the first and sixth pattern), and it is
not evident how the patterns relate to each other. The visualization
shows patterns related to the checkout process (annotated in red)
as well as some other events that are not visible in the CoreFlow
overview (e.g. “PaymentInfo” in the 9th pattern). In CoreFlow, the
“PaymentInfo” becomes visible when we drill down to the “check-
outLoaded −→ validateOrder” link (Figure 10). One may argue
that CoreFlow does not show as much information as the FSPM
approach; a counter argument is that CoreFlow is able to prioritize
and organize information into meaningful hierarchies.

6. Case Studies: Meaningfulness and Usefulness

While our approach is more scalable and offers improved inter-
pretability, it remains unclear if the branching patterns visualized
in CoreFlowVis are meaningful and useful in real-world analysis
situations. We decide to evaluate the utility of branching patterns
using a case study approach, since there are no established metrics
to evaluate pattern quality, and there are too few domain experts to
do a controlled study. We worked with three analysts over a period
of three years, where we conducted multiple discussion sessions
with each analyst, showing them the visualization, guiding them in
using the system to explore their data, soliciting their feedback and
iterating on the system and interface design.

We report qualitative feedback in this section and focus on two
issues. First, CoreFlow uses a frequency-based ranking function
to choose milestone events. Is frequency a useful metric for event
importance? To answer this question, we use the analysts’ domain
knowledge as a baseline to evaluate the patterns. These analysts

are domain experts who have worked on their data for years before
CoreFlow was invented. They know what is important and their
knowledge serves as a reasonable baseline. Second, we want to
know if the analysts understand the visualizations and if they are able
to discover useful insights using CoreFlowVis. The supplemental
materials contain screenshots for each case study.

The results from these three case studies show that frequent events
do correspond to meaningful milestones for certain datasets and
domains. In particular, web clickstreams seem to be an ideal use
case for CoreFlow (case 1). In such datasets, the number of unique
event is large (e.g. more than 4000), each event is a page URL,
which records both the action as well as state information (i.e. where
a visitor is at a particular step in his journey). In contrast, it may not
be appropriate to directly apply CoreFlow to application logs (case
2), where the number of unique events is relatively small (less than
50), and the events do not have state information (i.e. we have no
information on the state of the document after each action).

6.1. Case 1: Analyze Visitor Paths in Web Clickstreams

Background: Brian is an analyst for the marketing team at a large
company. His job involves understanding customers’ journeys on his
company’s website. He performs analysis and prepares reports for
his manager and company executives. He is interested in examining
major traffic flow patterns, understanding how the traffic flows after
certain key pages, and reviewing the website checkout process to
understand where visitors drop off. Currently, Brian uses multiple
tools to do analysis. None of them support the customer journey
analysis he is interested in.

Method: The CoreFlow research team has been interacting with
Brian for three years, meeting monthly to discuss how to help his
work. Initially, the team was learning about Brian’s work and his
tasks. Over time, he helped the team iterate on data mining algo-
rithms and system design. With CoreFlowVis, Brian has tried to
analyze six datasets with varying size from different time periods.

Analysis Process: When first working with CoreFlowVis, Brian
thought that starting with as much data as possible was a good idea.
He queried for all events on the company’s website for a period of 6
months resulting in a dataset of more than 300K sequences and 5
million events. Unfortunately, he found that there were no frequent
patterns for more than 40% of the sequences, indicating that the
sequences were very heterogeneous. For the remaining sequences,
the help page appears many times as the milestone. Brian was not
interested in help pages, so he decided to focus on sequences landing
on a portion of the website describing a particular product.

Pattern Quality: With the sharpened focus on the input data,
CoreFlowVis shows visualizations that aligned well with Brian’s
knowledge. Brian had defined a funnel of important pages previ-
ously in other tools, and he was amazed that CoreFlow was able to
automatically identify these pages as milestones. He commented
“this is perfect” as the visualization also showed frequent pages
visited outside the funnel and after the last page in the funnel.

Insights Discovered: The icicle plot helped Brian find a new user
segment that he wasn’t tracking already. By grouping all sequences
by the first event in the sequence, Brian was able to isolate existing

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.



Z.Liu et. al. / CoreFlow: Extracting and Visualizing Branching Patterns from Event Sequences 9

(a) Top 12 sequential patterns generated by the FSPM approach. Each
node represents a milestone event, colored by event category. The line
width represents the pattern’s support.

(b) Branching pattern extracted by the CoreFlow approach. The width of the
partitions in this icicle plot represents the number of sequences.

Figure 13: Comparison of patterns extracted by FSPM and CoreFlow. The vertical scale represents the average number of events.

customers who were getting to the website from a link inside of the
product. It turned out that 25% of the traffic was from this group of
users and understanding their behavior was critical to understanding
the traffic on the website.

Brian was also able to see that 25% of visitors were switching
from one payment plan to another. This finding helped him confirm
what the company was seeing in the sales department.

Feedback: Brian was pleased to see that CoreFlowVis provided
answers to many of his questions within a unified view, and com-
mented on its “potential to be very powerful if we continue to fully
optimize it to our needs. I am excited to see where we can take
it”. He mentioned that the tooltip showing top events in a link was
definitely helpful. Initially, he liked the tree visualization because it
was easy to follow the links. He felt that the icicle plot was hard to
interpret. As he became more familiar with the icicle plot, he saw
its utility and used it as his default view.

Takeaways: Contrary to the belief that we should gather “big data”
for insight discovery, we find that segmenting a large dataset in
a meaningful way is a prerequisite for focused exploration using
CoreFlowVis.

6.2. Case 2: Understand Workflows in Application Log Data

Background: Stephanie is a product analyst working on several
applications. She heard about CoreFlowVis from a colleague and
asked to try the system using her datasets. Stephanie is interested
in understanding how customers use her applications. For example,
what are the most common workflows and application features?
And, what do people do after they publish and share?

Method: We had three 1-hour meetings with Stephanie. In the
first meeting, we demonstrated CoreFlowVis and discussed input
data format. She then prepared a dataset, which we discussed and
analyzed together in the second and third meetings.

Analysis Process: Stephanie’s dataset contained approximately
1.5 million events, representing one-month of user usage data for an
application for video editing. She filtered out events related to login
and account management, because she was not interested in events
not directly related to the actual workflow. Each log event had four
attributes: timestamp, user ID, project ID and event name.

Stephanie first grouped events into sequences by project ID, result-
ing in 38K sequences. Each sequence represents user activities on a
project. In CoreFlowVis, she set the vertical axis to represent actual
timestamps instead of number of event, and the visualization showed
that some users spent up to a week working on a project, potentially
intermittently. The most frequent pattern in the visualization was

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.



10 Z.Liu et. al. / CoreFlow: Extracting and Visualizing Branching Patterns from Event Sequences

not very interesting: users were loading projects periodically, sug-
gesting that they worked on the video projects in multiple sessions.
She could drill down into individual links to see their workflows
during each of the sessions, but the process could be cumbersome.

Stephanie suggested breaking down the sequences into sessions:
if the temporal gap between adjacent events was greater than 20
minutes, it was safe to assume a new session had started. Dividing
project sequences into sessions generated 60K sequences in total.

Insights Discovered: Visualizations based on session sequences
offered interesting information. Using the funnel query, Stephanie
saw that it took about 12 minutes for users to begin publishing and
sharing their videos, and that the most frequent user workflow was
choosing images to embed in their videos. The repeated “choosing
image” events in the pattern might seem boring at first, but when
Stephanie hovered over each of the links, she saw that users were
focusing on different aspects of videoing editing over time. Initially,
they were changing video themes and changing layout, later on they
performed more text editing and page sequence restructuring more.
Stephanie thought the development team could use this insight to
more intelligently guide users in the video creation process. She was
also surprised to see that after the publishing began, multiple sharing
actions were performed (she was expecting one sharing action).

Pattern Quality: The patterns with frequent events as milestones
are not very meaningful. Stephanie had to hover over the links to
find interesting information. We think CoreFlowVis did not totally
succeed in this case for two reasons. First, an event like “open
project" may be more frequent than “draw rectangle”, but both
events are common features in the tool. Using frequency as the sole
metric resulted in picking “open project” over “draw rectangle”, and
this could be limiting. Second, in application log data, a meaningful
milestone is often a task, not a single event. For example, a task
might be creating an image from a screenshot, which consists of
multiple operations (events). Extracting single events is too low-
level, and CoreFlow needs to be extended to extract frequent event
groups.

Feedback: Although the patterns were not very meaningful,
Stephanie was still very excited and found CoreFlowVis to be more
useful than the tools provided by a commercial application she
was currently using. She thought CoreFlowVis had the potential to
evolve into a tool that could be a regular part of her work.

Takeaways: In case study 1, we see that the number of sequences
affects data heterogeneity and the usefulness of branching patterns.
Case study 2 suggests that the length of sequences and how a se-
quence is defined determine the quality of branching patterns as
well. In addition to showing the important events and how traffic
branches out across these events, CoreFlowVis also provides a way
to segment the sequences so that comparative analysis of patterns
within the links can reveal insights on the evolution of user behavior
over time.

6.3. Case 3: Compare First Marketing Touch Points

Background: Jason oversees business strategy for the marketing
team. His current work focuses on understanding the effectiveness
of digital marketing on different media platforms. The marketing

team at a company reaches out to potential users using multiple
media platforms including emails, promotional materials on the
company’s website and advertisements on third-party websites. Po-
tential users may experience a sequence of “media touch points”
before they make a purchase. These “media touch points” events
include opening an email, seeing a promotion when opening a trial
version of the software, or seeing an advertisement on a news web-
site, search engine or social media.

Method: Like Brian, Jason is an analyst we have met regularly for
three years. We met with him once every two months and conducted
in-depth interviews to learn about his work and analytic tasks.

Analysis Process: Jason’s team is working on boosting sales
for one of his company’s products. He collected 14787 sequences
with 40K unique events and 1.9 million events in total, and we
imported them into CoreFlowVis. The initial overview showed that
the marketing efforts on different media platforms eventually led
90% of users to the homepage of the product, and on average it took
about 30 days to achieve this result.

Jason thought it was useful to know the average length of time
to lead visitors to the homepage, and he asked if we could further
group the sequences by the first events. After we added this “group
by entry event” feature in CoreFlowVis, he was excited because he
could compare customer journeys by the first media touch point.

Insights Discovered: Using CoreFlowVis, Jason was able to de-
termine how the media touch point related to visiting the product
webpage. For example he found that visitors whose first touch point
was using a related product took the longest to get to the product
website (40 days). In contrast, marketing emails led users to the
product within on average 30 days.

Pattern Quality: This dataset has an interesting characteristic:
there was a highly frequent event (“landing on product website”)
occurring in most of the the sequences, and that event happened
very late in many sequences. We were concerned if this could be
a problem, because CoreFlowVis would not show events that hap-
pened before “landing on product website” by default. It turned out
that the visualization showed exactly what the analyst wanted to see:
how long it took people to come to the product website. In this case,
using frequency as a metric to choose milestone event proved to be
a reasonable strategy again.

Feedback: Jason presented these insights to his manager and
team, and the feedback was very positive. Two features of Core-
FlowVis were especially helpful: being able to see an overview of
the complete sequences, and comparing the effects of first media
touch points. The team also commented that they wanted to fur-
ther perform comparative analysis on different user groups in the
datasets.

Takeaways: Comparative analysis emerged as a crucial task in
this case study. There are many different ways to segment data
and perform comparisons. Previous research such as MatrixWave
[ZLD∗15] and HVHT [MSD∗16] provided valuable insights on this
research direction, and we intend to incorporate more powerful
comparative analytics such as hypothesis testing into CoreFlowVis
in future work.

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.



Z.Liu et. al. / CoreFlow: Extracting and Visualizing Branching Patterns from Event Sequences 11

7. Discussion

While we have provided evidence demonstrating the usefulness of
our approach, CoreFlowVis is not a panacea for temporal event
sequence analysis: it is unrealistic to assume that we can feed any
dataset into CoreFlowVis and insights will pop up. CoreFlow often
needs to be used in conjunction with analytic sharpening strate-
gies [DSP∗16] such as goal-driven record extracting (case study 1)
and temporal folding (case study 2). However, once we have tuned
analytical focus, CoreFlowVis is able to provide insightful visual-
izations with and without user-defined milestone events, as in the
cases of clickstreams and multi-media touch points analyses.

One unexpected finding from the case studies is that users did
not like to drill down to extract branching subpatterns. Based on the
feedback, drilling down changes the visualization too much, and
users find it tedious to navigate across multiple visualizations at
different levels of granularity. They often hovered over the links
to see top events in a link and used that information to decide if
drilling down made sense. One analyst commented, “Drilling down
is useful, but it would be nice if I can see the information without
having to do drill down”. Future work to improve this workflow
includes rendering information about subsequences in a link with-
out cluttering the visualization and precomputing subpatterns to
recommend interesting links for further exploration.

Displaying event labels in the visualizations remains a challenge.
Long event names result in overlap and clutter. In the icicle plot, we
trim the event names to fit the size of the rectangular links. Conse-
quently, some event names are not very readable. Techniques that
automatically shorten event names while preserving their readability
will be an interesting direction to explore further.

Finally, this research suggests the need of a larger research agenda
on evaluating visual summaries of event sequences. The case studies
show that the usefulness of the patterns can be highly contextual and
domain-dependent. Doing case studies is one way to evaluate pattern
utility, but this approach is time consuming and not very scalable.
In addition, comparative evaluation can be difficult using a case
study approach. When we worked with the analysts, we wanted to
have a deeper understanding on how the choice of ranking functions
affects pattern quality. We generated branching patterns using the
frequency-based method described in this paper, as well as using al-
ternative methods that characterize event importance with weighted
averages of frequency and position. When we informally asked
for feedback on these branching patterns, the analysts remarked
that it was difficult to rank the patterns in terms of usefulness and
meaningfulness. These experiences suggest that establishing robust
metrics or models to validate pattern quality can be an important yet
challenging research direction to pursue.

8. Conclusion

In this paper, we propose the idea of using branching patterns for
temporal event sequence analysis. We present a novel technique,
CoreFlow, that extracts branching patterns by recursively applying
the three-step Rank-Divide-Trim procedure. Compared with state of
the art in sequential pattern mining, CoreFlow is more scalable and
able to compute patterns for millions of events in seconds. We have
designed and developed a system based on CoreFlow. Feedback

from analysts confirms the usefulness of our approach in certain
domains, and points to the challenge of evaluating pattern quality
beyond a case study approach.

References

[Bah03] BAHAR E.: Clospan: Mining: Closed sequential patterns in large
datasets. 1

[BJL02] BUCHHEIM C., JÜNGER M., LEIPERT S.: Improving walker’s
algorithm to run in linear time. In International Symposium on Graph
Drawing (2002), Springer, pp. 344–353. 5

[BOH11] BOSTOCK M., OGIEVETSKY V., HEER J.: D3: data-driven
documents. Visualization and Computer Graphics, IEEE Transactions on
17, 12 (2011), 2301–2309. 5

[DSP∗16] DU F., SHNEIDERMAN B., PLAISANT C., MALIK S., PERER
A.: Coping with volume and variety in temporal event sequences: Strate-
gies for sharpening analytic focus. IEEE transactions on visualization
and computer graphics (2016). 11

[FVGG∗14] FOURNIER-VIGER P., GOMARIZ A., GUENICHE T.,
SOLTANI A., WU C.-W., TSENG V. S.: SPMF: a java open-source
pattern mining library. The Journal of Machine Learning Research 15, 1
(2014), 3389–3393. 7

[FVWGT14] FOURNIER-VIGER P., WU C.-W., GOMARIZ A., TSENG
V. S.: VMSP: Efficient vertical mining of maximal sequential patterns.
In Advances in Artificial Intelligence. Springer, 2014, pp. 83–94. 7

[GS14] GOTZ D., STAVROPOULOS H.: Decisionflow: Visual analytics
for high-dimensional temporal event sequence data. IEEE transactions
on visualization and computer graphics 20, 12 (2014), 1783–1792. 2, 6

[KL83] KRUSKAL J. B., LANDWEHR J. M.: Icicle plots: Better displays
for hierarchical clustering. The American Statistician 37, 2 (1983), 162–
168. 1, 2

[KSS05] KEIM D. A., SCHNEIDEWIND J., SIPS M.: Fp-viz: Visual
frequent pattern mining. 2

[KVP16] KWON B. C., VERMA J., PERER A.: Peekquence: Visual
analytics for event sequence data. In ACM SIGKDD 2016 Workshop on
Interactive Data Exploration and Analytics (2016). 1

[LRTM07] LAM H., RUSSELL D., TANG D., MUNZNER T.: Session
viewer: Visual exploratory analysis of web session logs. In Visual Analyt-
ics Science and Technology, 2007. VAST 2007. IEEE Symposium on (Oct
2007), pp. 147–154. 1, 6

[LWD∗17] LIU Z., WANG Y., DONTCHEVA M., HOFFMAN M., WALKER
S., WILSON A.: Patterns and sequences: Interactive exploration of
clickstreams to understand common visitor paths. IEEE Transactions on
Visualization and Computer Graphics 23, 01 (Janaury 2017). 1, 2, 7

[MLL∗13] MONROE M., LAN R., LEE H., PLAISANT C., SHNEIDER-
MAN B.: Temporal event sequence simplification. Visualization and
Computer Graphics, IEEE Transactions on 19, 12 (2013), 2227–2236. 1,
2

[MSD∗16] MALIK S., SHNEIDERMAN B., DU F., PLAISANT C., BJAR-
NADOTTIR M.: High-volume hypothesis testing: Systematic exploration
of event sequence comparisons. ACM Transactions on Interactive Intelli-
gent Systems 6, 1 (Mar. 2016), 9:1–9:23. 10

[PW14] PERER A., WANG F.: Frequence: interactive mining and visu-
alization of temporal frequent event sequences. In Proceedings of the
19th international conference on Intelligent User Interfaces (2014), ACM,
pp. 153–162. 1

[SZ00] STASKO J., ZHANG E.: Focus+ context display and navigation
techniques for enhancing radial, space-filling hierarchy visualizations.
In Information Visualization, 2000. InfoVis 2000. IEEE Symposium on
(2000), IEEE, pp. 57–65. 2

[WGGP∗11] WONGSUPHASAWAT K., GUERRA GÓMEZ J. A.,
PLAISANT C., WANG T. D., TAIEB-MAIMON M., SHNEIDERMAN B.:

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.



12 Z.Liu et. al. / CoreFlow: Extracting and Visualizing Branching Patterns from Event Sequences

Lifeflow: visualizing an overview of event sequences. In Proceedings of
the SIGCHI conference on human factors in computing systems (2011),
ACM, pp. 1747–1756. 2, 5

[WSSM12] WEI J., SHEN Z., SUNDARESAN N., MA K.-L.: Visual
cluster exploration of web clickstream data. In Visual Analytics Science
and Technology (VAST), 2012 IEEE Conference on (2012), IEEE, pp. 3–
12. 1

[WV08] WATTENBERG M., VIÉGAS F. B.: The word tree, an interactive
visual concordance. IEEE transactions on visualization and computer
graphics 14, 6 (2008), 1221–1228. 3

[WZT∗16] WANG G., ZHANG X., TANG S., ZHENG H., ZHAO B. Y.: Un-
supervised clickstream clustering for user behavior analysis. In SIGCHI
Conference on Human Factors in Computing Systems (2016). 1, 2

[ZBS16] ZHANG X., BROWN H.-F., SHANKAR A.: Data-driven personas:
Constructing archetypal users with clickstreams and user telemetry. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems (2016), ACM, pp. 5350–5359. 2, 3

[ZDF15] ZGRAGGEN E., DRUCKER S. M., FISHER D.: (s|qu)eries: Vi-
sual regular expressions for querying and exploring event sequences.
Proceedings of CHI 2015 (2015). 1, 6

[ZLD∗15] ZHAO J., LIU Z., DONTCHEVA M., HERTZMANN A., WIL-
SON A.: Matrixwave: Visual comparison of event sequence data. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems (2015), ACM, pp. 259–268. 1, 10

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.


