
Data Illustrator: Augmenting Vector Design Tools with
Lazy Data Binding for Expressive Visualization Authoring

Zhicheng Liu

1
John Thompson

2
Alan Wilson

3
Mira Dontcheva

1

James Delorey

3
Sam Grigg

3
Bernard Kerr

3
John Stasko

2

1Adobe Research 2Georgia Institute of Technology 3Adobe Systems Inc.
Seattle, WA Atlanta, GA Lehi, UT & San Francisco, CA

{leoli,mirad}@adobe.com {jrthompson,stasko}@gatech.edu {alawilso,delorey,grigg,bkerr}@adobe.com

ABSTRACT
Building graphical user interfaces for visualization author-
ing is challenging as one must reconcile the tension between
flexible graphics manipulation and procedural visualization
generation based on a graphical grammar or declarative lan-
guages. To better support designers’ workflows and practices,
we propose Data Illustrator, a novel visualization framework.
In our approach, all visualizations are initially vector graphics;
data binding is applied when necessary and only constrains
interactive manipulation to that data bound property. The
framework augments graphic design tools with new concepts
and operators, and describes the structure and generation of
a variety of visualizations. Based on the framework, we de-
sign and implement a visualization authoring system. The
system extends interaction techniques in modern vector design
tools for direct manipulation of visualization configurations
and parameters. We demonstrate the expressive power of
our approach through a variety of examples. A qualitative
study shows that designers can use our framework to compose
visualizations.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI): UI

Author Keywords
Data visualization; graphic design; interaction techniques;
framework; authoring; systems.

INTRODUCTION
Graphic designers have been producing infographics and
charts well before the recent proliferation of computer gen-
erated visualizations [20, 37]. As visualization becomes an
increasingly popular medium for storytelling and communi-
cation, there is a renewed and growing interest to understand
visualization creation from the perspective of graphic design
[3, 4, 32, 56, 57]. Prior studies show that graphic designers
approach visualization authoring differently from computer
scientists: they often start by thinking about the high-level

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHI 2018, April 21–26, 2018, Montreal, QC, Canada

© 2018 ACM. ISBN 978-1-4503-5620-6/18/04. . . 15.00
DOI: https://doi.org/10.1145/3173574.3173697

appearance of a visualization in terms of layout and space
configuration, and focus on encoding real data into the visuals
later [3, 56]. The discipline of graphic design has also estab-
lished a rich set of concepts and tools that are widely used
in the community. For example, professional vector editors
enable designers to work with shape geometries at the level
of anchor points and curve segments. The grid system and
smart guides serve as two powerful tools to precisely structure
visual elements and configure display space [32, 40, 56].

Despite the plethora of existing visualization creation tools,
few tried to incorporate designers’ workflow and practices into
system and interface design. Vuillemot and Boy [56] argue that
most visualization tools follow a bottom-up, data-to-graphics
process as described in the information visualization (InfoVis)
reference model [8]: starting with data, one performs data
transformation, visual mapping, and view transformation to
generate visualizations. This model informed the development
of powerful visualization algebra and declarative languages
[29, 49, 52, 58]. However, these tools often require coding
expertise, or are not flexible enough for design practices.

Systems like Lyra [48] and iVisDesigner [44] offer graphical
user interfaces (GUI) for visualization authoring without pro-
gramming, thus are more flexible. These efforts start with tem-
plate or grammar-based visualization generation engines, and
design interfaces for changing generative parameters. Such ap-
proaches still need to reconcile the potential tension between
flexible change of graphical configurations and the formal-
ism imposed by generation engines [4]. To bridge the gap
between generation engines and drawing tools, Hanpuku [4]
implements a streamlined model for visualization authoring
across multiple tools.

Recent work also began to explore visualization authoring
without programming from a purely graphic design perspec-
tive. With Data-Driven Guides [32], designers can create
freeform guides and sketch graphics with the guides. d3-
gridding [56] enables the creation of quick mock-ups with
minimal or no data. These systems adopt a “lazy data binding”
approach: visualizations are first and foremost vector graphics
with no underlying templates or declarative languages. De-
signers use familiar tools to draw, select and manipulate vector
graphics, and apply data encoding only when it is necessary.
Compared to template or grammar based systems, this ap-
proach is more compatible with designers’ workflows and
practices. Users do not have to align their mental models with

1

https://doi.org/10.1145/3173574.3173697


the grammar or model assumed by the system. Furthermore,
vector design tools are highly flexible and expressive: with
enough time and patience, one can create virtually any graph-
ics. Augmenting these tools with data encoding support can
reduce manual effort without disrupting designers’ workflows.

The lazy data binding approach is promising, but needs to
be developed further to support a wide variety of visualiza-
tions. Data-Driven Guides [32] only focus on infographics
with simple layouts. d3-gridding [56] primarily supports de-
sign mockups, and still requires programming. It remains a
challenge for designers to create high-fidelity data visualiza-
tions with complex visual mappings and layouts.

Consider the visualizations in Figure 1: Figure 1(a) is a slope
graph used on the cover of Alberto Cairo’s book The Func-
tional Art [7], showing U.S. states’ obesity and education
percentages (hereafter referred as the “Obesity vs. Education”
visualization); Figure 1(b) visualizes the NBA draft over the
past 20 years (x axis) and the order of players in terms of draft
pick (y axis) [15] (hereafter referred as the “NBA Redraft”
visualization); Figure 1(c) is a multi-series line graph visu-
alizing four companies’ monthly stock prices [36] (hereafter
referred as the “Stock Prices” visualization); Figure 1(d) is “A
Field Guide to Red and Blue America” by Wall Street Journal,
showing the PVI (Partisan Voter Index) for each state over the
past 9 elections [61] (hereafter referred as the “Red and Blue
America” visualization). Each small bar chart represents a
state, and is positioned according to US geography.

Designers might be able to use existing drawing tools or Data-
Driven Guides to create these examples, but the process will be
painful. Generating shapes or points on lines (Figure 1(c)) can
be tedious and slow; organizing the shapes into meaningful
layouts (Figure 1(b) and (d)) and map data to positions and
color (Figure 1(c)) are daunting manual tasks. To enable
designers to keep using the powerful drawing tools and to
automate the repetitive work, we need a systematic framework
with sufficient descriptive and generative power.

In this paper we propose a novel framework for visualization
authoring based on the lazy data encoding approach. This
framework describes components in a visualization using
graphic design concepts such as shape, anchor point, seg-
ment, and group. Two operators, repeat and partition, gener-
ate shapes and anchor points, and attach data to them. The
resultant visual components each has a data scope, and are
considered peers of each other inside a collection. Collections
use layouts to arrange shapes, and can be nested to create more
complex organizations. Data serves as constraints when bound
to visual properties, and unbound properties can be freely ma-
nipulated. These components and operators can describe the
structure and generation of a wide range of visualizations.

Informed by the framework, we design and implement the
Data Illustrator system. We augment interactive techniques
in modern vector design tools for direct manipulation of vi-
sualization configurations and parameters. We demonstrate
the expressive power of our approach through a range of ex-
amples. To better understand the strengths and limitations
of our approach, we conduct a qualitative user study with 13

Figure 1: Visualizations with varying levels of complexity

designers, focusing on whether they can understand and use
the framework for visualization composition.

FORMATIVE STUDY AND DESIGN ITERATIONS
To understand how different visualizations could be described
and created from a graphic design perspective, we held one-
hour weekly meetings with three designers over a period of
two years. All three designers have more than ten years of
experience in graphic design, digital illustration, web design
and print design. Two of the designers have also created
infographics and data visualizations on a regular basis as part
of their work. The designers frequently used applications such
as Adobe Photoshop [25], Illustrator [23], InDesign [24] and
Experience Design (XD) [22], Sketch [10], and Figma [12].
These applications represent the industry standard for design
professionals. They share a similar set of features and tools,
varying in terms of interaction and interface design.

In the initial meetings, we collected visualizations by sam-
pling chart types from systems like Tableau [51] and stylistic
information graphics from websites such as “the Kantar Infor-
mation is Beautiful Awards” [31]. Each week we asked the
designers to describe at a high level how they would create one
of these visualizations and demonstrate the workflow using the
tools of their choice. We told the designers to assume that the
system would take care of data binding automatically. These
exercises helped us understand designers’ way of thinking
and workflow through concrete examples, and familiarized
ourselves with an assortment of professional design tools.

2



Three main tasks are key in visualization authoring. De-
signers performed the following three tasks for all the exam-
ples: (1) sketch and generate shapes, which were accomplished
by drawing tools (e.g. Pen Tool in Adobe XD) and duplication
tools (e.g. Copy & Paste), (2) arrange and organize shapes,
where grids and groups were extensively used, and (3) bind
data to visual properties, which was not supported in most
design tools. Two pieces of insight were consistent with previ-
ous findings [53], and directly informed the focus on repeat
and layout in our framework: repeated shapes were dominant
in data visualizations, and position encoding were often rela-
tional instead of data-driven (i.e. a shape’s position depended
on the placement of related shapes).

Workflow is largely top-down, but data is not always an

afterthought. Observations from these exercises confirmed
our intuition and previous findings [3, 56] that designers think
about graphical aspects of visualizations before data encoding.
However, the authoring processes were not strictly divided
into a visual design stage followed by a data encoding stage.
When drawing and manipulating shapes, sometimes it was
beneficial to bring in real data. For example, one designer
showed how he would use the Blend Tool [28] in Illustrator to
create multiple copies of a shape. He first drew two shapes on
canvas, and then used the Blend Tool to interpolate a predefined
number of shapes between them. Instead of having to define
an arbitrary number, the designer wanted automatic generation
of the number based on real data.

Direct manipulation enhances flexibility and reduces se-

mantic distance. Designers treat the canvas not only as a
scene for production, but also a playground for experimenting
with ideas. It is important that they can flexibly and quickly
sketch shapes, and change visual configurations or appear-
ances with full control and precision. All the designers greatly
valued direct manipulation features that gave them immediate
visual feedback. Simple operations such as dragging corners
to resize a shape, or dragging shapes to move them around
can be immensely useful. Such features are commonplace in
design tools, but are rarely supported in visualization systems.

In the second phase of the formative study, we explored how
existing design tools could be directly used or augmented to
support the three main tasks. We conducted weekly design
meetings for 15 months. Each week we created a storyboard
to illustrate step-by-step visualization authoring scenarios. In
total we produced about 40 design sketches and mockups.
For instance, we spent one month brainstorming how to aug-
ment existing design tools to create visualizations in the line
graph category. In a line graph, one polyline plots all the
data, and the points on the line represent individual data cases.
Grammar-based approaches solve this problem through declar-
ative specification (e.g. line(position(date ⇤ value)) [60]) . To
designers, however, such specification did not make sense be-
cause a line’s position refers to the coordinates of its bounds.
Taking a graphics-centric approach, we created storyboards
based on different ideas such as repeating points along a line,
duplicating a point multiple times and connecting the dots,
and dividing a line into segments. We then collected designers’
feedback and eliminated ideas that sounded bizarre to them.

Line Path Rectangle Circle

2 anchor points 4 anchor points 4 anchor pointss 4 anchor points
1 line segment 3 line segments 4 line segments 4 curve segments

open open closed closed

Table 1: Anatomy of Shapes: Anchor Points and Segments

A great challenge we faced was to construct a coherent set of
concepts and tools that behave consistently for diverse visual-
izations. Often an idea seemed feasible for one visualization
design, but turned out to be inconsistent with new examples.
In addition to a single line graph, we needed to consider more
complex cases such as small multiples of line graphs or multi-
ple lines in a single chart. Moreover, slope graphs and parallel
coordinate plots also use line as a visual primitive, but in dif-
ferent ways from a line graph. These diverse visualizations
added complexity to the construction of a coherent framework.
We kept iterating on the ideas as new use cases arose. Af-
ter a few months of storyboard creation, we distilled a set
of concepts and tools that worked consistently across differ-
ent visualizations. We then started implementing a prototype
which helped further concretize the ideas, and the iterations
on framework and interaction designs continued towards the
end of the prototyping process.

THE DATA ILLUSTRATOR FRAMEWORK
The principle of consistency underpins the creation of our
framework. If we borrow an existing design concept, its mean-
ing and behavior must be consistent with the way it is used
in existing design applications. Otherwise we need to devise
a new concept. For example, symbol is widely adopted in
mainstream vector design tools. Users can turn any visual
object into a symbol (akin to the concept of class in computer
science), and create many instances of the symbol. Changes
to the symbol will be propagated to the instances. We tried
to use symbol to describe the generation of visualizations, but
eventually decided that it was a stretch to apply it in the con-
text of visualization authoring. To explain the framework, we
use the visualizations in Figure 1 as running examples.

Shapes, Anchor Points and Segments Shapes are the build-
ing blocks of visualizations. In professional design tools,
shapes are represented as series of anchor points connected
by line or curve segments. Table 1 shows a few shape types,
with information on the number of anchor points, the number
of segments, and whether the path is open or closed. A line is
the shape primitive for Figure 1(a), a rectangle for Figure 1(b)
and (d), and a polyline/path for Figure 1(c).

Repeat and Partition After sketching a shape primitive, de-
signers can use the repeat and partition operators to generate
shapes and attach data to them (Table 2). Repeat creates multi-
ple copies of a shape, and is inspired by duplication tools (e.g.
Repeat Grid in Adobe XD, Duplicate in Sketch); Partition
divides a shape into constituent parts, and draws inspirations
from the Knife Tool and Scissors Tool [26] in Adobe Illustrator.

3



Repeat Partition

Concept creates multiple copies of a
shape

divides a shape into con-
stituent parts

Shape works for all kinds of shape
and group

works for lines, rectangles,
circles, rings and areas only

Example
(line)
Example
(rectangle)

Example
(circle)

Table 2: Repeat vs. Partition

Figure 2: (a) repeat a line by State for “Obesity vs. Education”,
(b) repeat a rectangle by State for “Red and Blue America”

To create the lines in the “Obesity vs. Education” visualiza-
tion, we can first repeat a line by State. The repeat operator
duplicates the line, and associates each line with a unique
State value and the data rows sharing that value (Figure 2(a)).
Similarly, we can repeat a rectangle by State (Figure 2(b)) for
the “Red and Blue America” visualization. Note that multiple
rows share the same State value, and the repeat operator only
generates a shape for each unique State value. In general, the
data variable used to repeat a shape should be categorical,
since the number of repeated shapes must be an integer.

To create the line graphs in the “Stock Prices” visualization,
we follow suit and repeat a line by Company (Figure 3(a), top).
Next, we partition each line by Date to divide them into multi-
ple line segments. The partition operator generates an anchor
point for each Date value, and associates the corresponding
data rows with the anchor points (Figure 3(a)). Similarly, to
generate an outline for the “NBA Redraft” visualization, we
repeat a rectangle by Year first (Figure 3(b), top), then parti-
tion the rectangles by Player. In general, the partition operator
divides a shape into its constituent parts by a categorical vari-
able. How the division works depends on the shape type, for
example, a circle is divided into slices of pie (Table 2).

Data Scope A shape’s data scope refers to its attached data
rows as a result of the repeat or partition operator. The data
scope is usually a subset of the original dataset, described by

Figure 3: (a) repeat a line by Company then partition lines by
Date, (b) repeat a rectangle by Year then partition rectangles by
Player

categorical filters. For example, in Figure 3(a), after repeating,
the data scope of the first line is the data rows where Company=
Microsoft. The anchor points of the line has no data scope yet,
only after partitioning, each anchor point has its own data
scope: e.g. Company = Microsoft and Date = 01/01/2000. The first
filter is inherited from the line’s data scope.

Collection vs. Group After repeat (Figure 2), we have a
collection of lines or rectangles for each of the four examples
in Figure 1. This collection may be considered as a “group”:
in all the design applications, multiple shapes can be grouped
so that they can be moved, scaled or copied at once. In our
framework, however, collection and group are two distinct
concepts. Table 3 explains the differences between them.

Collection Group

A collection of polylines, delineated
by green dotted borders. The
lines are repeated by Company and
partitioned by Date (Figure 3(a))

A group of shapes in the “brain
drain” visualization [1], delineated
by blue borders

The children of a collection have the
same type (e.g. rectangle, group)

The children of a group can have
different types

Each child inside a collection has a
different data scope

All the children inside a group
share the same data scope

Table 3: The differences between a collection and a group

Layout To arrange the lines and rectangles in a collection,
we apply a layout to the collection. Table 3 shows an example

4



of a grid layout with one column and four rows. The pink
lines are the grid cell boundaries. In general, we can apply the
following types of layout to a collection generated by repeat:
freeform (i.e. no layout), grid, stack, and packing. Grid layout
is an essential tool supported by most design applications.
Stack layout exists in fewer applications (e.g. Auto-Layout
[2] in Sketch), but is an important feature in visualizations.
The main differences between a grid layout and a stack layout
include: (1) a grid is two dimensional (rows and columns), a
stack is one dimensional (horizontal or vertical); (2) all the
grid cells have the same size, and the size of the collection
depends on the cell size and number of cells; in a stack layout,
the size of the collection is the sum of all the children’s sizes.
A packing layout is a space-filling arrangement: the layout is
equivalent to a Treemap for rectangle shapes, and a packed
bubble chart for circles.

Both the grid and stack layouts have a coordinate space param-
eter consisting of two values: Cartesian and Polar. Grid layout
in the polar space is inspired by the Polar Grid Tool [27] in
Adobe Illustrator. Similarly, stack layout has a corresponding
representation in the Polar space.

Nested Collection Collections can be nested to create small
multiples or visualizations with nested layouts (e.g. stacked
bar chart) [30]. We have seen how to create a nested collec-
tion in Figure 3(b): first repeat a rectangle by Year to get a
collection, then partition the rectangles in the collection by
Player. This procedure will generate the structure in the “NBA
Redraft” visualization, if we apply a one-row grid layout to
the top level collection, and a one-row grid layout to the inner
collections obtained from partitioning. Nested collections can
also be created by repeating a collection.

Lazy Data Binding as Constraint By default, the lines or
rectangles generated by repeat or partition behave as regular
vector graphics. Users can select, scale, move, rotate, align,
distribute, and delete the shapes. Even after we have organized
these shapes in a collection and their positions are constrained
by the layout, we can still move the collection as a whole,
or edit the anchor points’ position and stroke color. Such
flexibility allows manual encoding of shape properties, which
could be tedious. Automatic data encoding reduces the manual
efforts needed, and serves as additional constraints on the
manipulability of visual components.

Say we want the stroke color of the four polylines in Table 3
to represent Company to match the “Stock Prices” visualization.
We specify a data binding consisting of four parameters: a
data variable (Company), a visual property (Stroke Color), a list of
visual components([line1, line2, line3, line4]), and an aggregator
(e.g. Sum or Mean) if the data variable is numerical and we need
to aggregate multiple values. Once applied, the data binding
locks the Stroke Color property and prevents it from interactive
manipulation. It is still possible to change the range or domain
of the scale, which in turn updates the colors. Unconstrained
interaction is restored if the data binding is removed.

The data binding operator executes in three steps. First, it com-
putes a list of data values, one per visual component, based on
the component’s data scope and the aggregator. In the “Stock

Figure 4: Peers of an anchor point: (a) partitioned polylines,
each anchor point has a data scope, (b) paths where the anchor
points have no data scopes. The focal anchor point is colored
in purple, their peers have purple borders.

Prices” visualization, the data values are the four companies.
Second, the binding operator creates a scale. The scale type
depends on the data variable type and the visual property (the
choice of scale type closely follows the guidelines in D3 [6]);
the scale’s domain encompasses the data values computed in
the previous step; and the scale’s range is determined by the
visual property values. Finally, the binding operator trans-
forms the list of data value into property values using the scale,
and sets the visual properties. Many systems offer automatic
data binding support similar to the description above. Our
framework differs in the lazy binding as constraint approach.

Peers Binding Company to Stroke Color results in a unique stroke
color for each polyline (Figure 4(a)). Next we need to bind Date
to the x position and Price to the y position of the anchor points
to create the “Stock Prices” visualization. Here we want the
data binding to apply to all the anchor points on all the lines.
To create the “Obesity vs. Education” visualization, the data
binding works differently. In Figure 2(a) we have repeated a
line by State, applying a grid layout to the collection gives us
the result in Figure 4(b). We then need to bind BA Degree % to
y position of the first anchor point in each line only, and to bind
Obesity % to y position of the last anchor points only.

To distinguish these cases and convey how the data binding
will work clearly to the users, we introduce the concept of
peers. Shapes generated by repeat or partition are peers of
each other. For example, the four polylines in Table 3 are
peers to each other. What constitutes the peers of an anchor
point depends on whether the anchor point has a data scope.
When we draw a line and then repeat it by data, the anchor
points have no data scopes. The peers of an anchor point are
the anchor points at the same index on peer shapes (Figure
4(b)). When we partition a line by data, the anchor points are
generated and associated with data. All these anchor points are
thus considered peers of each other. If we repeat a partitioned
line by data, all the anchor points on all the lines are peers of
each other (Figure 4(a)). The concept of peers helps clarifying
which visual components should be affected by a data binding.

Layout Taking Precedence over Position Binding The
structure enforced by layouts sometimes may be in conflict
with binding data to positions. In such cases, the layout takes
precedence over position binding. For example, with the four
polylines arranged in a grid layout (Figure 4(a)), after binding
data to the positions the anchor points, we obtain Figure 5(a).

5



Figure 5: (a) The presence of a grid layout has precedence
over position binding, (b) Removing the grid layout unifies
the scale of position binding

The position binding only takes effect inside each grid cell.
Replacing the grid layout with a freeform layout unifies the
scales and axes (Figure 5(b)).

The framework describes the structure and generation of the
backbone of the visualizations. In the actual authoring pro-
cesses, we still need to perform many lower-level tasks, such
as configuring the parameters of a layout, ordering and fil-
tering the collection children, and setting the scale range for
data binding. In the next section, we discuss the design of the
authoring interface based on this framework, so that we can
operationalize the framework with flexibility and control.

INTERFACE AND DESIGN RATIONALE
We designed the Data Illustrator application with the following
design goals in mind: familiarity, interpretability, discover-
ability, and control. Realizing these design goals is a crucial
step to ensure that our target audience comprehends and enjoys
working with a complex authoring tool. Familiarity ensures
that the user’s previous experience will match their expec-
tations; therefore if our tool uses a feature from an existing
vector editing application, we want that feature to be consis-
tent in appearance and behavior. In the case when a novel
feature is needed, the design should be interpretable by the
user. Interpretability requires the result of a user action to be
immediately comprehended, an important requirement during
generative data-bindings. Discoverability on the other hand
ensures that the interface design shows affordances for interac-
tion so that users can detect the possibility of an action with a
visual object. Finally, users need to feel that they are in control
at every step of the process to realize their design, especially
when the system automatically generates aspects of their work.

The interface of Data Illustrator consists of seven components
(Figure 6). The Canvas provides space to draw, select and
manipulate shapes. The Toolbar on the left contains tools for
selecting and drawing shapes - only one can be active at a
time. Directly to its right, the Data Variables Panel supports
dataset file management. Below that is the Layers Panel which
allows users to inspect the canvas. The Actionbar on the far
right supports actions for associating data to shapes. Directly
below, the Property Inspector displays editable attributes of
the currently selected shapes. Finally, the Data Table Panel at
the bottom shows all the rows and columns of the dataset and
reveals the data scopes of the currently selected shapes.

Figure 6: Seven components of the Data Illustrator interface:
1) Toolbar, 2) Variables Panel, 3) Layers Panel, 4) Canvas, 5)
Table Panel, 6) Actionbar, 7) Property Inspector

Drawing Shapes The drawing tools work by click and drag
interactions on the canvas. Data Illustrator supports the fol-
lowing mark types: lines (Line Tool), rectangles (Rectangle
Tool), ellipses (Ellipse Tool), text (Text Tool), and open or
closed non-regular paths (Pen Tool). Similar as done in other
design applications, the bounding box of the shape remains
active after drawing for further manipulation. Data Illustrator
relies heavily on paper.js [35] as the view model for rendering
shapes in HTML5 Canvas.

Figure 7: Selecting shapes: (a) Select Tool selects entire shapes
and collections of shapes. (b) Direct Select Tool selects anchor
points and line segments of shapes.

Selecting Visual Components Selection is a prerequisite for
operations such as changing visual properties, transforming
objects, associating objects with data, or binding data to at-
tributes. Data Illustrator supports two types of selection: (1)
the Select Tool works on shapes and collections of shapes, (2)
the Direct Select Tool works on anchor points and line/curve
segments of shapes. The Direct Select Tool is a powerful
feature in applications such as Illustrator, providing essential
control to edit paths and deform regular shapes (e.g. rect-
angles). Both selection tools use familiar interactions such
as: click to single select, shift+click to add to a selection,
click+drag to lasso a selection, and clicking on the canvas to
deselect. Selection tools are also used to transform objects:
click+drag on an object to move it, click+drag on a bounding
box corner to re-size a shape, or pressing an arrow key to
nudge the selection. The rich selection of interactions in Data
Illustrator provides the precise control required by designers.
All user interactions in Data Illustrator are developed using
RxJS [43] and Backbone.js [13].

Working with Data Data Illustrator allows users to work
with one tabular dataset at a time. Users can choose from a
spectrum of sample datasets from various sources, or upload a
CSV file from their own computer. Upon loading a dataset, the
system infers the data types of each column with the Datalib

6



library [19], displays data column summaries in the Data
Variables panel, and shows the complete dataset in the Data
Table panel. The Data Table also acts as an inspector for the
data scopes of the currently selected visual items.

Context-Sensitive Interface We design the interface to be
context-sensitive so that users can understand the possibility of
actions at any state. The buttons in the Actionbar are enabled
and disabled based on selection on the canvas. For example,
if a group is selected, the “Partition” button is disabled, indi-
cating that partitioning a group is not allowed. Similarly, the
Property Inspector displays a set of property controls based on
the shape type of current selection.

Repeating Repeat actions begin with the selection of a visual
object (i.e. shape, group of shapes, or collection). Clicking
the Repeat button displays a preview of how the selection will
be repeated by a categorical variable. The preview supports
changing the categorical variable. Upon confirmation, the
repeat action duplicates the selected object, and places the
two objects in a default grid layout. We chose to generate
only two copies of the object because for large datasets, the
number of objects will be overwhelming. To enable designers
to control the number of objects to work on, we augment
the Repeat Grid tool from Adobe XD (Figure8(a)). Users
control the number of generated objects and the grid layout
parameters by the following interactions: click+drag handles
to display additional rows or columns, click+drag padding to
adjust spacing, double-click to open the collection and select
objects inside. Dragging past the total shapes allotted by data
does not generate further repeated shapes.

Figure 8: Collections with layouts: (a) Repeat Grid. (b) Parti-
tion Stack. (c) Partition Stacks Nested in a Repeat Grid

Partitioning Like the repeat action, the partition action re-
quires a selection of a shape with or without a data scope.
Groups or collections cannot be partitioned. Clicking the Par-
tition button will display a preview of how the selected shape
will be divided. Changing the data variable updates the pre-
view auxiliary lines. Partitioning a rectangle results in a stack
layout of the sliced rectangles. Unlike the grid layout, the
stack layout does not support padding. Nested structures can
be created by partitioning a shape multiple times - the data
hierarchy limits the number of partition actions.

Peers Peers are the atomic objects created by repeat and
partition actions. Similar to symbols in Sketch, or components
in Figma, peers share visual properties. Upon selecting any
shape, Data Illustrator highlights its peers with a faint blue to
show linkage between peers. This design applies to anchor
points and segments as well (Figure 9). Changes to a shape
are instantaneously updated to its peer shapes. Properties
shared between peers include: appearance, scaling, positioning

Figure 9: Peers highlighted on selection: (a) Peer shapes. (b)
Peer anchor points. (c) Peer line segments. (d) Peer shapes in
free-form layout.

anchor points or line segments, and data-bindings. The only
non-linked property is shape position. Grid and stack layouts
provide positioning to peers. When the user breaks a layout,
the peer shapes can be positioned freely.

Breaking a layout is an irreversible action. Removing a grid
layout poses a problem for controlling the number of displayed
shapes without handles to reveal rows and columns. To remedy
the loss of control over peer shape display, Data Illustrator
provides a Peer Count slider in the Property Inspector.

Lazy Data-Bindings To map visual attributes to data, the
user selects any object on the canvas. The Property Inspector
populates with the corresponding set of properties. To bind
data to property, tools such as Tableau or Lyra let users drag
and drop a variable to a property field. We did not choose
this design because dragging and dropping require significant
cursor movement, and it is not clear which variables can be
mapped to a given property. In our design, the user clicks the
binding icon next to the property control, which displays a
list of applicable data columns (Figure 10 left). Selecting a
data column creates a data binding between the underlying
data scope and that visual property for all peer objects. For
each binding, the system creates a scale, where the range
depends on the current values of the visual property. For
example, position bindings use the bounds of all peer shapes,
and continuous color bindings use the original hue of the
selected object.

Figure 10: Lazy data-bindings: (a) clicking the binding icon
shows a list of applicable variables, (b) changing the aggre-
gator when binding numerical variables, (c) property control
and icon update after binding, the remove icon indicates the
possibility of removing a binding

Data-bindings are lazy in Data Illustrator, meaning that they
constrain only their bound visual property. For example, po-
sition bindings only constrain the position of peer objects
in relation to each other. Dragging a position-bound peer
object will move the other peers and axis together. Lazy data-

7



bindings give designers control within a generative action. All
data-bindings are implemented with the D3 scale library [6].

Figure 11: Configurable axes and legends: (a) Numerical
axis. (b) Categorical axis. (c) Categorical color legend. (d)
Numerical color legend.

Interactive Axes and Legends Data Illustrator automat-
ically creates interactive axes and legends upon successful
completion of data bindings. Axes and legends in Data Il-
lustrator are explanatory - acting as a reference for the data-
binding, and configurable - supporting direct manipulation of
the underlying scale. Upon their creation, Data Illustrator mo-
mentarily highlights axes and legends to help the user discover
the afforded interactions. Users can adjust the offset of an
axis with constraints: they can only move an x axis vertically,
and a y axis horizontally. When the user moves an axis’ peer
objects, the axis follows, retaining its relative position. The
user can click+drag on the axis handle to configure the under-
lying scale’s range (Figure 11(a) and (b)), which updates the
bound objects instantaneously. For categorical axis, users can
define the order of objects in two ways: 1) sort the objects in a
collection through the “ordered by” property control slider, 2)
directly drag the axis text labels to reorder objects.

Color legends can be re-positioned anywhere on the canvas.
They augment designs of color palettes and color gradients
from mainstream vector editors. For categorical color legends,
users change colors to replace the default colors picked by the
system (Figure 11(c)). For numerical color legends, users can
select the color for each stop, add a stop by a single click, and
remove a stop by dragging it away (Figure 11(d)). Changes
to a color legend are immediately applied to its bound peers.
Furthermore, axes and legends of the same semantic type can
be linked or merged to support consistent data-bindings across
collections - a concept pioneered by Claessen and Wijk [9].

RELATED WORK

Visualization Grammars and Programming Toolkits
Graphical grammars [60, 59, 17] have served as the basis
for powerful and expressive data visualization toolkits such as
ggplot [58]. The grammars from Wilkinson [60] and Wickham
[59] both follow a bottom-up approach: starting from data,
aesthetic mappings from variables and coordinate systems
drive the visual form of the graphic. Our framework assumes
sketched shapes instead of data as the starting point. Data is
only incorporated into graphics as necessary.

Declarative languages [17] provide a higher-level abstraction
for constructing interactive visualizations by de-coupling spec-
ification from execution. Visualization toolkits built along
this research direction [18, 5, 6, 29] simplify the construction
of visualizations while preserving a broad design space. D3

in particular, provides powerful capabilities in an accessible
form, while supporting design freedom beyond data-driven
mappings. Designers can create annotations, visual embellish-
ments and additional structure alongside the declarative data
mappings supported by D3. The popularity of D3 has been
attributed to its re-use of an ubiquitous medium: the Docu-
ment Object Model (DOM). Our approach strives to mimic
this paradigm, as D3 enables direct manipulation of the DOM,
we augment vector editing tools to interact with the scene
graph. While D3 requires designers to select, bind, and style
DOM elements with JavaScript code, we provide a visual and
direct manipulation approach for non-programmers.

Interactive Visualization Design Tools
Numerous efforts support visualization authoring in a non-
programming, interactive environment. Rost [46] reviews
twelve of these interactive tools by comparing her experience
re-creating Rosling’s iconic GapMinder visualization [45] with
each tool. Grammel et. al [16] provide a comprehensive survey
of different categories of tools used to construct visualizations.
Chart typology tools are a popular category of visualization
design tools because of their ease-of-use. They provide users
with a selection of templated charts to choose from (e.g. Many
Eyes [55], DataWrapper [14], Raw [11], Plotly [42]). These
tools quickly generate charts for users to compare design al-
ternatives, however users are restricted to a predefined set of
chart types and only a handful of customization options.

More robust and advanced tools such as Tableau provide ap-
proachable features such as recommending chart generation
and automating best practices. Tableau is based on a table
algebra framework [52], where operators such as cross and
nest work solely on data. Visual marks only appear in a later
stage of the pipeline. In our framework, operators such as
repeat and partition primarily work on visual components,
with data as ingredients. Tableau also supports detail-oriented
customizations on scales and visual configurations, but these
customizations often have to be accomplished through dialogs.
Our approach brings the customization of scales, axes and leg-
ends directly to the canvas with direct manipulation widgets.

Recent data visualization research has sought to empower de-
signers to create expressive visualizations without the need
to program. Tools such as Lyra [48] and iVisDesigner [44]
aim to provide users with the power of declarative toolkits in a
familiar vector editing interface. Both systems employ higher-
level representations of the scene graph: Lyra is built upon the
Vega visualization grammar [29], while iVisDesigner’s custom
framework supports templated plots. User interaction modifies
the abstraction, which in turn updates visualization rendering.
In our approach, we do not have such abstractions: user in-
teraction directly translates to operations on the scene graph.
This choice allows us to focus on the interface and interaction
design first, while the system architecture and visualization
model come second.

8



Our work continues the line of research that explores visualiza-
tion composition using graphical primitives. In early research
such as SageBrush [47], users choose chart type from a list
of prototypes, add graphemes to the prototype, and specify
mappings between data and grapheme properties. SketchStory
[33] and SketchInsight [34] use freeform shapes as archetypes
to be repeated and transformed with data mappings. Victor
[54] and Schachman [50] contribute procedural methods for
designers to create parametrically constrained graphics. Pro-
fessional design tools like Illustrator [23] and After Effects
[21] provide features such as Repeater and Blend Tool to du-
plicate shapes and layers. These efforts inspire our work and
suggest the need of a visual language that describes the com-
position and generation of diverse visualizations. Data-Driven
Guides (DDG) [32] has taken a similar approach to ours by
augmenting existing drawing tools and treating marks as flex-
ible, deformable graphical elements. Our system supports a
wider range of data-to-visual mappings and more complex
layouts than DDG. Vuillemot and Boy [56] define a frame-
work to assist designers in creating visualization mock-ups
by employing top-down approach for subdividing the scene
graph. Our framework is similar to the segmenting, nesting
and linking portions of their framework. Our system creates
high-fidelity visualizations instead of mock-ups.

Additional systems have investigated novel interaction tech-
niques for visualization authoring. Early research explored
programming by demonstration as a method for creating charts,
and described heuristics for inferring user intention in chart
specification [41]. iVoLVER [39] supports the extraction,
transformation and presentation of information using pipeline
style widgets in the canvas. Our system takes interaction de-
sign inspiration from the progressive disclosure techniques
used in the iVoLVER system.

EVALUATION

Visualization Examples and Videos
We have created a diverse set of visualizations using the
Data Illustrator system to demonstrate the expressivity of the
framework. The visualization examples and videos show-
ing the authoring processes are available at http://www.data-
illustrator.com/gallery.php. In terms of chart type, the exam-
ples include rectangular bar chart, triangle bar chart, grouped
bar chart, stacked bar chart, scatter plot, line graph, slope
graph, bump chart, heatmap, parallel coordinates plot, range
chart, Gantt chart, stringline chart, and small multiples.

User Study
Visualization design is a complex process involving multiple
stages. In the initial phase, designers often generate ideas by
sketching to explore the design space. When the visual form
and structure are set, mockups are created to collect feedback
[56]. In the final production stage, engineers or designers
re-create high-fidelity visualizations by incorporating real data
into the mockups. We focus on visualization re-creation tasks
to evaluate whether designers can understand and use the
framework to compose visualizations. While the re-creation
task is not an exact replica of the complete design process, it
allows us to choose visualizations that cover all the concepts

and features in our tool, and to compare participants’ perfor-
mance objectively. Furthermore, the ability to think and act in
terms of the framework concepts is the cornerstone of using
Data Illustrator for ideation and more open-ended designs.

We recruited 13 designers (7 male, 6 female) from the Puget
Sound area and the Atlanta metropolitan area. The breakdown
of their experiences in graphic design is as follows: less than
2 years: 1 (7%); 2-4 years: 3 (23%); 4-6 years: 6 (46%); 6-8
years: 1 (7%); greater than 8 years: 2 (15%). Their design
work included web UI (85%), mobile UI (77%), visualization
and infographics (61%), graphics and illustration (54%), print
(54%), logo (38%) and video game (7%). Out of the 13
participants, 5 (39%) had minimal or less than 2 years of
experience with visualization, 4 (31%) had 2-4, 2 (15%) had
4-6, and 2 (15%) had more than 6 years of experience.

The study with each participant lasted 1.5 hours. In the setup
we used two monitors, each with a resolution of 2500x1600.
We first gave a tutorial on Data Illustrator following the script
at https://goo.gl/UtZruK. The participants learned about the
main features of the system by creating three simple visual-
izations: a stacked bar chart, a scatter plot, and a triangle
bar chart with both positive and negative values. The tutorial
lasted around 35 to 40 minutes. The participants then were
asked to complete two visualization creation tasks. At the end
of the two tasks, they could decide if they wanted to work
on an optional, more difficult task, if time allowed. We used
“Obesity vs. Education” for Task 1, and “NBA Redraft” for
Task 2. The optional Task 3 was to create the “Red and Blue
America” visualization. These three visualizations covered
the main features and functionality of the system: Task 1 re-
quires repeating a line by data, binding categorical data to
the position and colors of anchor points, and merging scales;
Task 2 involves both repeat and partition, binding numerical
data to fill color, and nested collections; Task 3 requires nested
collections, binding data to segment position and fill color, and
breaking layout for position binding. For each visualization,
we explained the schema and meaning of the source data, and
described what the visual components and their properties
represent. We asked the participants to focus on the main
visualization and not to worry about the annotations. At the
end of the session, each participant completed a questionnaire
and answered questions in a semi-structured interview.

All participants successfully completed Tasks 1 and 2 with
minimal guidance (µ=12.23 minutes, s=5.61 for Task 1,
µ=10.77 minutes, s=4.30 for Task 2). Out of 13 partici-
pants, 12 volunteered to work on the third task. Four of them
completed it successfully (µ=14.75 minutes, s=2.87), the re-
maining eight could not finish the task after spending time
(µ=10.63 minutes, s=5.93). For these eight participants, we
analyzed how close they were from success. Completing Task
3 required three milestone steps to be accomplished: create
nested collections with Year and State, position the states on
a map layout, and bind PVI to the y position of the rectangles’
top segments. Seven out of the eight participants were able to
finish two of the steps but were stuck on the last step.

The participants rated their experience of learning and using
Data Illustrator on a 5-point Likert scale. The results are as

9

http://www.data-illustrator.com/gallery.php
http://www.data-illustrator.com/gallery.php
https://goo.gl/UtZruK


follows: on learning, µ=2.62, s=0.96 (1-very easy, 5-very
difficult); on creating visualizations, µ=2.38, s=0.77 (1-very
easy, 5-very difficult); on the authoring experience, µ=2.15,
s=0.90 (1-very enjoyable, 5-very frustrating).

Designers’ background and expertise directly affected their
learning experience and performance. For those who had sub-
stantial experience with visualization, they thought learning
was easy: “Tableau has a bit of a learning curve, and with
Data Illustrator being based off of Adobe Illustrator, there
isn’t as much of a learning curve.” (P3). In contrast, P5 had
little experience with visualization, and compared to learning
with graphic design tools: “it takes 30 minutes for me to learn
the [Data Illustrator] tutorial via a person, that usually to me
is not an easy program. [Adobe] XD for me was easy ’cause I
didn’t have to use any tutorials, so I’d say [learning with Data
Illustrator] is somewhat difficult”.

The participants were impressed by the power of the tool:
“Very impressive. When I looked at all 3 visualizations I
thought: oh boy, how am I going to do this! Then once you
finally work through the sequences needed to make it, the
actually-doing-it part is super easy!” (P11). P9 commented
on the tool’s flexibility and ease of use: “I feel like it’s more
flexible than D3 or Tableau. It’s a happy medium of being
able to control the graphic visually. It’s pretty simple too, you
don’t have to be a super expert user like with Adobe Illustrator,
which is nice. It’s a nice sweet spot between having little
control with Tableau and getting frustrated with D3”. P6, how-
ever, knew little about visualization and did not understand
the concept of scale. He struggled in the authoring process,
but still managed to complete the two tasks by trial and error.

We also observed that the designers exhibited different work-
flows in the authoring processes. In Task 1, some participants
used the Repeat Grid to generate a few lines first, bound data
to the anchor point positions, then used the Peer Count slider
to generate the remaining lines; other participants generated all
the lines first before binding data to positions. The strategies
to accomplish Task 2 also varied. Some participants generated
all the rectangles by Row ID, broke the grid, and bound data to
the x and y positions; others saw a nested structure in the visu-
alization, and repeated a rectangle by Year then partitioned the
rectangles by Player. This diversity of workflow demonstrates
the flexibility of our framework and system.

We identified three recurring pain points in using the system.
First, many participants confused the order of shapes inside
a collection with their positions. In Task 2, they wanted to
generate the visualization by simply sorting the shapes in a
Repeat Grid. The order did determine the shapes’ positions
in a collection to a certain extent, which was the source of
confusion. Second, in the current design, to bind data to
shapes’ position, one must break the layout. Otherwise the
position property controls are hidden. Some participants were
baffled not seeing the position controls. Showing the position
controls at all times and prompting to break layout can resolve
this problem. Finally, several participants could not recall the
feature of binding to segment position and adjusting the scale
to generate bar charts with negative values in Task 3. Binding

to height felt more natural to them. We plan to handle negative
values when binding data to height to address this issue.

The participants also made suggestions on how to improve the
interface and system. The lack of undo functionality bothered
many participants. They were afraid of making irreversible
mistakes and chose to think deeply about the authoring strategy
before trying it out. They also wanted a more robust Pen Tool
and the ability to style the axes and draw grid lines. Some
participants also commented that starting from scratch was
harder than picking a template: “It took me some time [...] to
think through sequences I would need to take to re-create it.
Tableau has the ‘Show Me’ feature that hints what bindings
can be made with that type of dataset” (P3). Such comments
are consistent with previous research findings [38]: compared
to automated visualization generation tools, design-centric
authoring tools evoke deeper reflections on design choices
and execution plans. For use cases where quick visualization
construction is desirable, saving the visualizations as reusable
templates will be very useful.

CONCLUSION AND FUTURE WORK
We present a novel framework that describes the generation of
visualizations from the perspective of graphic design. Based
on the framework, we design and build Data Illustrator, a sys-
tem that augments vector design tools with lazy data binding
for visualization authoring. We demonstrate the expressivity of
our approach through visualization examples. A study with 13
designers shows that the system is learnable and designers can
use the framework to compose visualizations. The Data Illus-
trator system is available at http://www.data-illustrator.com.

The framework we created provides descriptive and generative
power for visualization design, but in its current form, it is not
complete. The framework needs to be expanded to include
area as a shape primitive, so that it can describe visualizations
such as area charts and stream graphs. Further research is also
necessary to include the support for hierarchical, network and
geographic data, and the corresponding visualizations.

In terms of implementation, Data Illustrator demonstrates the
feasibility and power of a subset of the framework. Layouts
such as packing and polar coordinate positioning are not yet
supported in the system. We also need to implement ring as
a shape primitive for creating donut charts. Finally, systems
such as Lyra build on top of Vega, which have access to the
functionalities offered by D3, including interpolation methods
for lines and curves. Data Illustrator should provide those
capabilities in order to be more powerful.

For future work, we would also like to explore how to turn
visualization designs into reusable templates. Once users
create a visualization inside Data Illustrator, they should be
able to export it into formats readable by other tools and to
share it with other users, who can customize the design with
their own data and visual styles. Adding authoring support for
interactivity is also a direction to investigate further.

ACKNOWLEDGMENTS
This work was supported in part by Adobe Research and by
the National Science Foundation via award IIS-1320537.

10

http://www.data-illustrator.com


REFERENCES
1. Accurat. 2014. Brain Drain - part of the collection: La

Leturra - Visual Data. (2014). Retrieved September 17,
2017 from https://www.accurat.it/works/la-lettura/.

2. Anima App. 2017. Auto-Layout: Introducing
Stacks-Flexbox for Sketch. (21 February 2017).
Retrieved September 17, 2017 from
https://medium.com/sketch-app-sources/auto-layout-

introducing-stacks-flexbox-for-sketch-c8a11422c7b5.

3. Alex Bigelow, Steven Drucker, Danyel Fisher, and
Miriah Meyer. 2014. Reflections on how designers design
with data. In Proceedings of the 2014 International
Working Conference on Advanced Visual Interfaces.
ACM, 17–24. DOI:
http://dx.doi.org/10.1145/2598153.2598175

4. Alex Bigelow, Steven Drucker, Danyel Fisher, and
Miriah Meyer. 2017. Iterating between tools to create and
edit visualizations. IEEE Transactions on Visualization
and Computer Graphics 23, 1 (January 2017), 481–490.
DOI:http://dx.doi.org/10.1109/TVCG.2016.2598609

5. Michael Bostock and Jeffrey Heer. 2009. Protovis: A
graphical toolkit for visualization. IEEE Transactions on
Visualization and Computer Graphics 15, 6 (December
2009), 1121–1128. DOI:
http://dx.doi.org/10.1109/TVCG.2009.174

6. Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer.
2011. D3: data-driven documents. IEEE Transactions on
Visualization and Computer Graphics 17, 12 (January
2011), 2301–2309. DOI:
http://dx.doi.org/10.1109/TVCG.2011.185

7. Alberto Cairo. 2012. The Functional Art: An introduction
to information graphics and visualization. New Riders.

8. Stuart K Card, Jock D Mackinlay, and Ben Shneiderman.
1999. Readings in Information Visualization: Using
Vision to Think. Morgan Kaufmann.

9. J. H. T. Claessen and J. J. van Wijk. 2011. Flexible
Linked Axes for Multivariate Data Visualization. IEEE
Transactions on Visualization and Computer Graphics 17,
12 (December 2011), 2310–2316. DOI:
http://dx.doi.org/10.1109/TVCG.2011.201

10. Bohemian Coding. 2017. Sketch - The digital design
toolkit. (2017). Retrieved September 17, 2017 from
https://www.sketchapp.com/.

11. Density Design and Calibro. 2013. Raw Graphs. (16
January 2013). Retrieved September 17, 2017 from
http://rawgraphs.io/.

12. Figma Design. 2017. Figma: the collaborative interface
design tool. (2017). Retrieved September 17, 2017 from
https://www.figma.com/.

13. DocumentCloud. 2016. Backbone.js. (5 April 2016).
Retrieved September 17, 2017 from
http://backbonejs.org/.

14. Datawrapper GmbH. 2017. Datawrapper. (2017).
Retrieved September 17, 2017 from
https://www.datawrapper.de/.

15. Russell Goldenberg. 2017. Twenty Years of the NBA
Redrafted. (2017). Retrieved September 17, 2017 from
https://pudding.cool/2017/03/redraft/.

16. Lars Grammel, Chris Bennett, Melanie Tory, and
Margaret-Anne Storey. 2013. A survey of visualization
construction user interfaces. EuroVis - Short Papers
(2013), 19–23.

17. Jeffrey Heer and Michael Bostock. 2010. Declarative
language design for interactive visualization. IEEE
Transactions on Visualization and Computer Graphics 16,
6 (December 2010), 1149–1156. DOI:
http://dx.doi.org/10.1109/TVCG.2010.144

18. Jeffrey Heer, Stuart Card, and James Landay. 2005.
Prefuse: a toolkit for interactive information visualization.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’05). ACM, 421–430.
DOI:http://dx.doi.org/10.1145/1054972.1055031

19. Jeffrey Heer, Dominik Moritz, Michael Correll, and
Kanit Wongsuphasawat. 2017. Vega Datalib. (26 October
2017). Retrieved September 17, 2017 from
https://github.com/vega/datalib.

20. Nigel Holmes. 1984. Designer’s guide to creating charts
& diagrams. Watson-Guptill.

21. Adobe Systems Inc. 2017a. Adobe After Effects CC |
Visual effects and motion graphics software. (2017).
Retrieved September 17, 2017 from
http://www.adobe.com/products/aftereffects.html.

22. Adobe Systems Inc. 2017b. Adobe Experience Design
CC (Beta) | Prototyping & Wireframing Tool. (2017).
Retrieved September 17, 2017 from
http://www.adobe.com/products/xd.html.

23. Adobe Systems Inc. 2017c. Adobe Illustrator CC | Vector
Graphic Design Software. (2017). Retrieved September
17, 2017 from
http://www.adobe.com/products/illustrator.html.

24. Adobe Systems Inc. 2017d. Adobe InDesign CC |
Desktop Publishing Software and Online Publisher.
(2017). Retrieved September 17, 2017 from
http://www.adobe.com/products/indesign.html.

25. Adobe Systems Inc. 2017e. Adobe Photoshop CC | Best
photo, image & design editing software. (2017).
Retrieved September 17, 2017 from
http://www.adobe.com/products/photoshop.html.

26. Adobe Systems Inc. 2017f. Cut, divide, and trim objects
in Illustrator. (10 March 2017). Retrieved September 17,
2017 from https://helpx.adobe.com/illustrator/using/
cutting-dividing-objects.html.

27. Adobe Systems Inc. 2017g. Draw circular (Polar) grids.
(13 September 2017). Retrieved September 17, 2017
from https://helpx.adobe.com/illustrator/using/drawing-
simple-lines-shapes.html.

11

https://www.accurat.it/works/la-lettura/
https://medium.com/sketch-app-sources/auto-layout-introducing-stacks-flexbox-for-sketch-c8a11422c7b5
https://medium.com/sketch-app-sources/auto-layout-introducing-stacks-flexbox-for-sketch-c8a11422c7b5
http://dx.doi.org/10.1145/2598153.2598175
http://dx.doi.org/10.1109/TVCG.2016.2598609
http://dx.doi.org/10.1109/TVCG.2009.174
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/TVCG.2011.201
https://www.sketchapp.com/
http://rawgraphs.io/
https://www.figma.com/
http://backbonejs.org/
https://www.datawrapper.de/
https://pudding.cool/2017/03/redraft/
http://dx.doi.org/10.1109/TVCG.2010.144
http://dx.doi.org/10.1145/1054972.1055031
https://github.com/vega/datalib
http://www.adobe.com/products/aftereffects.html
http://www.adobe.com/products/xd.html
http://www.adobe.com/products/illustrator.html
http://www.adobe.com/products/indesign.html
http://www.adobe.com/products/photoshop.html
https://helpx.adobe.com/illustrator/using/cutting-dividing-objects.html
https://helpx.adobe.com/illustrator/using/cutting-dividing-objects.html
https://helpx.adobe.com/illustrator/using/drawing-simple-lines-shapes.html
https://helpx.adobe.com/illustrator/using/drawing-simple-lines-shapes.html


28. Adobe Systems Inc. 2017h. How to blend objects in
Illustrator. (15 February 2017). Retrieved September 17,
2017 from https://helpx.adobe.com/illustrator/using/
blending-objects.html.

29. University of Washington Interactive Data Lab. 2017.
Vega - A Visualization Grammar. (25 October 2017).
Retrieved September 17, 2017 from
https://vega.github.io/vega/.

30. Waqas Javed and Niklas Elmqvist. 2012. Exploring the
design space of composite visualization. In Pacific
Visualization Symposium (PacificVis), 2012 IEEE. IEEE,
1–8. DOI:
http://dx.doi.org/10.1109/PacificVis.2012.6183556

31. Kantar. 2017. Information is Beautiful Awards. (2017).
Retrieved September 17, 2017 from
https://www.informationisbeautifulawards.com/.

32. Nam Wook Kim, Eston Schweickart, Zhicheng Liu, Mira
Dontcheva, Wilmot Li, Jovan Popovic, and Hanspeter
Pfister. 2017. Data-driven guides: Supporting expressive
design for information graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (January
2017), 491–500. DOI:
http://dx.doi.org/10.1109/TVCG.2016.2598620

33. Bongshin Lee, Rubaiat Habib Kazi, and Greg Smith.
2013. SketchStory: Telling More Engaging Stories with
Data Through Freeform Sketching. IEEE Transactions on
Visualization and Computer Graphics 19, 12 (December
2013), 2416–2425. DOI:
http://dx.doi.org/10.1109/TVCG.2013.191

34. Bongshin Lee, Greg Smith, Nathalie Henry Riche, Amy
Karlson, and Sheelagh Carpendale. 2015. SketchInsight:
Natural data exploration on interactive whiteboards
leveraging pen and touch interaction. In Visualization
Symposium (PacificVis), 2015 IEEE Pacific. IEEE,
199–206. DOI:
http://dx.doi.org/10.1109/PACIFICVIS.2015.7156378

35. Juerg Lehni and Jonathan Puckey. 2015. Paper.js. (25
October 2015). Retrieved September 17, 2017 from
http://paperjs.org/.

36. Malcom Maclean. 2014. d3.js multi-line graph with
automatic (interactive) legend. (8 July 2014). Retrieved
September 17, 2017 from https:
//bl.ocks.org/d3noob/08af723fe615c08f9536f656b55755b4.

37. Philip B Meggs and Alston W Purvis. 2016. Meggs’
History of Graphic Design. John Wiley & Sons.

38. Gonzalo Gabriel Méndez, Uta Hinrichs, and Miguel A.
Nacenta. 2017. Bottom-up vs. Top-down: Trade-offs in
Efficiency, Understanding, Freedom and Creativity with
InfoVis Tools. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’17).
ACM, 841–852. DOI:
http://dx.doi.org/10.1145/3025453.3025942

39. Gonzalo Gabriel Méndez, Miguel Nacenta, and Sebastien
Vandenheste. 2016. iVoLVER: Interactive Visual

Language for Visualization Extraction and
Reconstruction. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’16). ACM, 4073–4085. DOI:
http://dx.doi.org/10.1145/2858036.2858435

40. Josef Muller-Brockmann. 1985. Grid systems in graphic
design: A visual communication manual for graphic
designers, typographers and three dimensional designers.
Arthur Niggli.

41. Brad Myers, Jade Goldstein, and Matthew Goldberg.
1994. Creating charts by demonstration. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’94). ACM, 106–111. DOI:
http://dx.doi.org/10.1145/191666.191715

42. Plotly. 2017. Plotly. (2017). Retrieved September 17,
2017 from https://plot.ly/.

43. ReactiveX. 2016. RxJS. (12 December 2016). Retrieved
September 17, 2017 from http://reactivex.io/rxjs/.

44. Donghao Ren, Tobias Hollerer, and Xiaoru Yuan. 2014.
iVisDesigner: Expressive interactive design of
information visualizations. IEEE Transactions on
Visualization and Computer Graphics 20, 12 (December
2014), 2092–2101. DOI:
http://dx.doi.org/10.1109/TVCG.2014.2346291

45. Hans Rosling. 2015. Gapminder. (2015). Retrieved
September 17, 2017 from
https://www.gapminder.org/tools/.

46. Lisa Charlotte Rost. 2016. One Chart, Twelve Tools. (17
May 2016). Retrieved September 17, 2017 from
http://lisacharlotterost.github.io/2016/05/17/one-

chart-tools/.

47. Steven Roth, John Kolojejchick, Joe Mattis, and Jade
Goldstein. 1994. Interactive Graphic Design Using
Automatic Presentation Knowledge. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’94). ACM, 112–117. DOI:
http://dx.doi.org/10.1145/191666.191719

48. Arvind Satyanarayan and Jeffrey Heer. 2014. Lyra: An
Interactive Visualization Design Environment. Computer
Graphics Forum 33, 3 (2014), 351–360. DOI:
http://dx.doi.org/10.1111/cgf.12391

49. Arvind Satyanarayan, Dominik Moritz, Kanit
Wongsuphasawat, and Jeffrey Heer. 2017. Vega-lite: A
Grammar of Interactive Graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (January
2017), 341–350. DOI:
http://dx.doi.org/10.1109/TVCG.2016.2599030

50. Toby Schachman. 2015. Apparatus: A hybrid graphics
editor and programming environment for creating
interactive diagrams. (10 November 2015). Retrieved
September 17, 2017 from http://aprt.us/.

51. Tableau Software. 2017. Tableau Software: Business
Intelligence and Analytics. (2017). Retrieved September
17, 2017 from https://www.tableau.com/.

12

https://helpx.adobe.com/illustrator/using/blending-objects.html
https://helpx.adobe.com/illustrator/using/blending-objects.html
https://vega.github.io/vega/
http://dx.doi.org/10.1109/PacificVis.2012.6183556
https://www.informationisbeautifulawards.com/
http://dx.doi.org/10.1109/TVCG.2016.2598620
http://dx.doi.org/10.1109/TVCG.2013.191
http://dx.doi.org/10.1109/PACIFICVIS.2015.7156378
http://paperjs.org/
https://bl.ocks.org/d3noob/08af723fe615c08f9536f656b55755b4
https://bl.ocks.org/d3noob/08af723fe615c08f9536f656b55755b4
http://dx.doi.org/10.1145/3025453.3025942
http://dx.doi.org/10.1145/2858036.2858435
http://dx.doi.org/10.1145/191666.191715
https://plot.ly/
http://reactivex.io/rxjs/
http://dx.doi.org/10.1109/TVCG.2014.2346291
https://www.gapminder.org/tools/
http://lisacharlotterost.github.io/2016/05/17/one-chart-tools/
http://lisacharlotterost.github.io/2016/05/17/one-chart-tools/
http://dx.doi.org/10.1145/191666.191719
http://dx.doi.org/10.1111/cgf.12391
http://dx.doi.org/10.1109/TVCG.2016.2599030
http://aprt.us/
https://www.tableau.com/


52. Chris Stolte, Diane Tang, and Pat Hanrahan. 2002.
Polaris: A system for query, analysis, and visualization of
multidimensional relational databases. IEEE Transactions
on Visualization and Computer Graphics 8, 1 (December
2002), 52–65. DOI:http://dx.doi.org/10.1109/2945.981851

53. John Thompson and John Stasko. 2016. Understanding
Data-Driven Visual Encodings through Deconstruction.
Poster at IEEE VIS 2016 (2016).
https://www.cc.gatech.edu/~stasko/papers/infovis16-

poster-deconstruction.pdf

54. Bret Victor. 2013. Drawing Dynamic Visualizations.
(2013). Retrieved August 3, 2016 from
https://vimeo.com/66085662.

55. Fernanda B Viegas, Martin Wattenberg, Frank Van Ham,
Jesse Kriss, and Matt McKeon. 2007. Manyeyes: a site
for visualization at internet scale. IEEE Transactions on
Visualization and Computer Graphics 13, 6 (December
2007), 1121–1128. DOI:
http://dx.doi.org/10.1109/TVCG.2007.70577

56. Romain Vuillemot and Jeremy Boy. 2018. Structuring
Visualization Mock-ups at the Graphical Level by
Dividing the Display Space. IEEE Transactions on
Visualization and Computer Graphics 24, 1 (January
2018), 424–434. DOI:
http://dx.doi.org/10.1109/TVCG.2017.2743998

57. Jagoda Walny, Samuel Huron, and Sheelagh Carpendale.
2015. An Exploratory Study of Data Sketching for Visual
Representation. In Computer Graphics Forum, Vol. 34.
Wiley Online Library, 231–240. DOI:
http://dx.doi.org/10.1111/cgf.12635

58. Hadley Wickham. 2009. ggplot2: elegant graphics for
data analysis. Springer Science & Business Media.

59. Hadley Wickham. 2010. A Layered Grammar of
Graphics. Journal of Computational and Graphical
Statistics 19, 1 (2010), 3–28. DOI:
http://dx.doi.org/10.1198/jcgs.2009.07098

60. Leland Wilkinson. 2005. The Grammar of Graphics
(Statistics and Computing). Springer-Verlag New York,
Inc.

61. Randy Yeip, Stuart A Thompson, and Will Welch. 2016.
A Field Guide to Red and Blue America. (25 July 2016).
Retrieved September 17, 2017 from
http://graphics.wsj.com/elections/2016/field-guide-red-

blue-america/.

13

http://dx.doi.org/10.1109/2945.981851
https://www.cc.gatech.edu/~stasko/papers/infovis16-poster-deconstruction.pdf
https://www.cc.gatech.edu/~stasko/papers/infovis16-poster-deconstruction.pdf
https://vimeo.com/66085662
http://dx.doi.org/10.1109/TVCG.2007.70577
http://dx.doi.org/10.1109/TVCG.2017.2743998
http://dx.doi.org/10.1111/cgf.12635
http://dx.doi.org/10.1198/jcgs.2009.07098
http://graphics.wsj.com/elections/2016/field-guide-red-blue-america/
http://graphics.wsj.com/elections/2016/field-guide-red-blue-america/

	Introduction
	Formative Study and Design Iterations
	The Data Illustrator Framework
	Interface and Design Rationale
	Related Work
	Visualization Grammars and Programming Toolkits
	Interactive Visualization Design Tools

	Evaluation
	Visualization Examples and Videos
	User Study

	Conclusion and Future Work
	Acknowledgments
	References 

