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Abstract—To support effective exploration, it is often stated that interactive visualizations should provide rapid response times.
However, the effects of interactive latency on the process and outcomes of exploratory visual analysis have not been systematically
studied. We present an experiment measuring user behavior and knowledge discovery with interactive visualizations under varying
latency conditions. We observe that an additional delay of 500ms incurs significant costs, decreasing user activity and data set
coverage. Analyzing verbal data from think-aloud protocols, we find that increased latency reduces the rate at which users make
observations, draw generalizations and generate hypotheses. Moreover, we note interaction effects in which initial exposure to
higher latencies leads to subsequently reduced performance in a low-latency setting. Overall, increased latency causes users to shift
exploration strategy, in turn affecting performance. We discuss how these results can inform the design of interactive analysis tools.

Index Terms—Interaction, latency, exploratory analysis, interactive visualization, scalability, user performance, verbal analysis

1 INTRODUCTION

One stated goal of interactive visualization is to enable data analysis
at “rates resonant with the pace of human thought” [19, 20]. This goal
entails two research directions: understanding the rate of cognitive
activities in the context of visualization, and supporting these cognitive
processes through appropriately designed and performant systems.

Latency is a central issue underlying these research problems. Due
to the time required for query processing, data transfer, and rendering,
data-intensive visualization systems incur delay. It is generally held
that low latency leads to improved usability and better user experience.
Unsurprisingly, multiple research efforts focus on reducing query and
rendering latency for large datasets, which may include billions or
more data points. Latencies in state-of-the-art systems can range from
20 milliseconds up to multiple seconds for a unit task [2, 28, 29].

Despite the shared goal of minimizing latency, the effects of interac-
tion delays on user behavior and knowledge discovery with visualiza-
tions remain largely unevaluated. While previous research on the ef-
fects of interactive latency in puzzle solving [4, 17, 35, 36] and search
[8] has shown that user behavior changes in response to millisecond-
scale differences in latency, studies in other domains such as computer
games report no significant effects [23, 39].

It is unclear to what degree these findings apply to exploratory vi-
sual analysis. Unlike problem-solving tasks or most computer games,
exploratory visual analysis is open-ended and does not have a clear
goal state. User interaction may be triggered by salient visual cues
in the display, driven by a priori hypotheses, or carried out through
exploratory browsing. The process is more spontaneous and is uncon-
strained by factors such as game rules.

How does latency affect user behavior and knowledge discovery
in exploratory visual analysis? To answer this question, we conduct
controlled experiments comparing two latency conditions, differing by
500ms per operation. We analyze data collected from both system
logs and think-aloud protocols to test if (a) delay impacts interaction
strategies and (b) lower latency leads to better analysis performance.

Our work makes the following contributions. First, we present the
design and the results of a controlled study confirming that a 500ms
difference can have significant impacts on visual analysis. Specifi-
cally, we find that (1) the additional delay results in reduced inter-
action and reduced dataset coverage during analysis; (2) the rate at
which users make observations, draw generalizations and generate hy-
potheses (as determined using a think-aloud protocol) also declines
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due to the delay; and (3) initial exposure to delays can negatively im-
pact overall performance even when the delay is removed in a later
session. Second, we extend the insight-based evaluation methodology
[37, 38] for comparative analysis of qualitative data regarding visu-
alization use. We introduce a procedure for segmenting, coding and
analyzing think-aloud protocols for visualization research. Our anal-
ysis contributes coding categories that are potentially applicable for
future protocol analysis. Finally, our results show that the same delay
has varying influences on different interactive operations. We discuss
some implications of these findings for system design.

2 RELATED WORK

Our research draws on related work in scalable visualization systems,
cognitive science and domain-specific investigations on the effects of
interactive latency. We review relevant literature below.

2.1 Scalable Data Analysis Systems

Building low latency analysis systems has been a focus for many re-
search projects and commercial systems, spanning both back-end and
front-end engineering efforts. Spark [44, 45] supports fast in-memory
cluster computing through read-only distributed datasets for machine
learning tasks and interactive ad-hoc queries. Nanocubes [28] con-
tribute a method to store and query multi-dimensional aggregated data
at multiple levels of resolution in memory for visualization. Profiler
[26] builds in-memory data cubes for query processing. Tableau’s data
engine [1] optimizes both in-memory stores and live connections to
databases on disk. imMens [29] decomposes multi-dimensional data
cubes into binned data tiles of reduced dimensionality and performs
accelerated query processing and rendering on the GPU.

In cases where long-running queries are unavoidable, sampling and
online aggregation [22] are often used to improve user experience.
BlinkDB [2] builds multi-dimensional, multi-resolution samples and
dynamically estimates a query’s response time and error. With online
aggregation [22], visualizations of estimated results are incrementally
updated as a query progresses. Studies suggest that data analysts can
interpret approximate results visualized as bar charts with error bars to
make confident decisions [16].

2.2 Time Scales of Human Cognition

Decades of psychology research have produced evidence that differ-
ent thought processes operate at varying speeds [25]. Newell [33] pro-
vides a framework outlining proposed time scales of human cognition.
Relevant to studies of human-computer interaction are the cognitive
(100 milliseconds to 10 seconds) and rational (minutes to hours) time
bands. Within the cognitive band, Newell identifies three types of time
constants: deliberate act, operation, and unit task. Card et al. [11]
make similar distinctions using a different terminology. Table 1 sum-
marizes these scales, exemplary actions, and the time ranges during
which these actions occur.



Newell’s Term Card et al.’s Term Examples Time Range

deliberate act perceptual fusion recognizing a pattern, tracking animation ~100 milliseconds
cognitive operation unprepared response clicking a link, selecting an object ~1 second
unit task unit task editing a line of text, making a chess move ~10 seconds

Table 1. Time scales at which human actions take place

Based on these frameworks, Card et al. [10] provide a high-level
discussion of time constants in the context of information visualiza-
tion. Fundamental task types in exploratory visual analysis include se-
lect, navigate, coordinate and organize [20]. Brushing and linking, for
instance, coordinates multiple views such that selecting items in one
view causes highlighting of corresponding items in the other views.
Card et al. [11] place brushing and linking in the “perceptual fusion”
time band, suggesting immediate visual feedback within 100ms. Little
work elucidates the desired time scales for the other types of interac-
tive techniques, however.

Ballard et al. [4] propose an adaptation of Newell’s framework
based on empirical observations. They argue that the ~100ms time
scale for deliberate acts is an over-estimation, and adjust it to ~50ms.
They strongly emphasize the time scale around ~300ms, termed the
“embodiment level”. Exemplary human actions at this time scale in-
clude eye saccades and body movements. By focusing on this level of
time constant, they explain how a minor change in interface can lead to
significant changes in cognitive behavior. For example, when the cost
of acquiring a piece of information is increased from an eye movement
to a head movement in a block-copying task, subjects change strategy
and rely more on working memory [3].

These frameworks provide guidance for investigations of interac-
tive dynamics in different domains, and anchor the interpretation of
experimental results. In the next section, we review empirical findings
on the effects of varying latencies in different domains.

2.3 Effects of Latency in Various Domains

Research into the effects of latency typically focus on the perception
of delay, impacts on the outcome of an activity, and changes in user
behavior. Michotte’s [31] studies report that longer delay weakens the
perception of causality. People will interpret the consecutive motions
of two objects as causally related if the second object moves within
70ms after contact; such impressions are lost when the delay exceeds
160ms. For the perception of delay in task-oriented settings, studies
find that users can detect latencies as low as 2.38 ms when dragging
an object on direct touch interfaces [34].

Investigating the effect of varying latency between 1 and 50 ms on
touch interfaces, Jota et al. [24] find that user performance decreases as
latency increases. In particular, input latency significantly affects the
last stage of pointing tasks. Beigbeder et al. [7] also find that latency
as low as 100ms can significantly degrade shooting precision in the
first-person shooting game “Unreal Tournament 2003”.

Not all studies find a negative correlation between latency and user
performance. Sheldon et al. [39] report that latency as high as sev-
eral seconds does not significantly affect user performance in real time
strategy games such as Warcraft III. While perhaps surprising, this re-
sult can be explained by the observation that tasks such as understand-
ing game situation and conceiving strategy play a more important role
in affecting the outcome of a game. These tasks take place at a larger
time scale, and so are less sensitive to typical network latencies.

Research in cognitive science finds that changes in interaction cost
can change user behaviors during problem-solving. This change in be-
havior in turn impacts the final outcome. O’Hara and Payne [35] show
that by changing the cost of moving a tile in an 8-puzzle game (shift-
ing from pressing a key to typing a command), participants resort to
more mental planning and solve the puzzle in fewer moves. In a re-
lated study, they impose a 4-second additional lockout delay in each
tile move. This change results in less manipulation of the tiles and
more search of an internally-represented problem space [36]. O’Hara
and Payne’s experiments arguably involve conditions that span multi-
ple time scales in Table 1.

Evidence from longitudinal studies of user search behavior reveals
that seemingly insignificant time differences for a unit task can im-
pact user behavior, too. Brutlag [8] observes that a small difference of
300ms in web search delay reduces the number of searches users per-
form. Even after the latency is restored to previous levels, this reduc-
tion in user activity persists for days. In contrast, players of Half-Life,
a first person shooting game, do not appear to be affected when more
than 40% of them experience delays of over 225ms. Players tolerate
the delays and keep returning to the games [23].

It is not clear if these findings can be simply extrapolated to a new
domain. Unlike problem solving or computer games, exploratory vi-
sual analysis is open-ended and has no clearly formulated goal state.
Conducting a targeted study for visual analysis is thus necessary and
presents new challenges in experiment design and data analysis.

3 EXPERIMENTAL METHOD

The goal of this research is to investigate whether differences in in-
teractive latency influence behaviors and outcomes during exploratory
visual analysis. To this end, we use a 2 (datasets) x 2 (latency con-
ditions) experiment design. We induce two latency conditions in the
imMens [29] system, differing by 500 milliseconds per operation. The
subjects analyze two datasets and report their findings through a think-
aloud protocol. We log user interaction and record verbal data for anal-
ysis. In this section, we describe the system used in the study, datasets
and visualizations, participants, tasks, and study procedures.

3.1 Experimental System

We adapt the open-source imMens system [29] for our study. imMens
can interactively query and visualize more than millions of data points
at higher frame rates than other existing systems. The low interactive
latency in imMens allows the creation of different latency conditions
by injecting precise delays into the interactive operations.

imMens aggregates data at multiple scales of binning resolution and
visualizes the aggregates as histograms, bar charts, line graphs, binned
scatterplots and geographic heatmaps. The system supports four main
interaction techniques for the binned plots: select, pan, zoom, and
brush & link. To ensure real-time interaction with the visualizations,
imMens pre-computes data tiles, which are 3- or 4-dimensional pro-
jections decomposed from the full data cube. When visualizations are
created or viewports are modified via panning or zooming at the client,
imMens loads relevant data tiles from the server and updates the visu-
alizations. To reduce network latency, imMens pre-fetches data tiles
for application states reachable from the current state and caches the
data tiles at the client side. The browser-based client uses WebGL to
perform parallel query processing and rendering on the GPU. Bench-
marking tests show that imMens is able to sustain a performance of 50
frames per second for interactive brushing & linking of 1 billion data
points across 25 visualizations. Prior work by Liu et al. [29] describes
the design and implementation of imMens in greater detail.

We added two user interface controls to the imMens interface to
support log scale transforms and color scale adjustment. Given a large
number of data elements and a limited number of pixels for each vi-
sualization, a brushing selection of a small number of data points can
be difficult to see, as the projected sums in linked views may be quite
small. In response, we provided a checkbox for users to toggle be-
tween linear and log scale for histograms and bar charts. In addition,
an outlying density value in a two-dimensional plot can skew the color
mapping. Users can use a range slider control to define the lower and
upper bounds of color clamping within binned scatterplots and geo-
graphic heatmaps.



3.2 Latency Conditions

We considered multiple choices when designing our latency condi-
tions. One approach is to include multiple latencies in small incre-
ments, which is useful for identifying time scale thresholds for each
interactive operation. Assessing thresholds, however, is not the fo-
cus of our study, and often requires conducting studies with highly-
controlled, low-level tasks. We are more interested in understanding
the effects of latency on various dimensions of exploratory visual anal-
ysis. Thus a more ecologically valid setting, in which users perform
open-ended exploratory analysis, is appropriate. However, studying
ecologically valid behavior imposes practical constraints. Exploratory
visual analysis is a complex process, requiring careful analysis of both
quantitative interactive event log data and qualitative data concerning
insight discovery. We also anticipate that datasets with different se-
mantics can lead to different user behaviors, so it is necessary to in-
clude dataset and visualization configuration as a factor and repeat the
latency conditions in more than one analysis scenario. As a result, we
decided to use a 2 (datasets) x 2 (latency conditions) mixed design.

Table 2 summarizes the latency for the primary interactive opera-
tions supported in imMens (brushing and linking, selecting, panning
and zooming) in the two latency conditions. In the control condition,
the latency is simply the time taken by imMens to fetch data tiles,
perform aggregation (roll-up) queries and re-render the display. In the
delay condition, we injected an additional 500 milliseconds for each of
these operations. We experimented with different delays in pilot stud-
ies. Initially we chose to inject an additional delay of 1 second, based
on the representative latencies of related data-processing systems. Our
pilot subjects found the system unusable, especially for operations like
brushing and linking. We thus reduced the additional delay to 500ms.
Since there is little prior work on the time scales of different interactive
operations in visual analysis, we applied the same amount of delay for
all four operations to see if the operations have varying sensitivity to
the same delay.

To ensure the usability of the system in the delay condition, we im-
plemented throttling and debouncing in imMens. Throttling prevents
repeated firings of the same event. For example, mouse movements
within the same bar only trigger a single brushing event. Debouncing
maintains a queue of events being fired, delays processing by 500ms,
and drops unprocessed events when a new event of the same kind ar-
rives. The injected delay per operation thus does not result in a grow-
ing accumulation of unprocessed events, preventing cascading delays
and thus substantial usability problems.

Both log transform and color scale adjustment are client-side ren-
dering operations that do not incur data processing latency. We chose
not to inject delays into these two operations to maintain ecological
validity. It is also beneficial to include both low- and high-latency
operations so that we can examine if subjects preferentially use low-
latency operations in favor of higher-latency ones.

3.3 Datasets and Visualizations

We use two publicly available datasets from different domains. One
contains 4.5 million user check-ins on Brightkite [13], a location-
based check-in service similar to Foursquare, over a period of two
years. We visualize this dataset using five linked components (Figure
1(a)): a multi-scale geographic heatmap showing the locations of the
checkins, three histograms showing the number of check-ins aggre-
gated by month, day and hour, and a bar chart showing the number
of check-ins by the top 30 travelers whose check-ins span the greatest
geographic bounding box. The geographic heatmap has 8 zoom levels.

The other dataset consists of 140 million records about the on-time
performance of domestic flights in the US from 1987 to 2008 [9]. Sub-
jects explore this dataset using four linked visualizations (Figure 1(b)):
a binned scatterplot showing departure delay against arrival delay, two
bar charts showing the number of flights by carrier and year, and a his-
togram showing the distribution of flights across months. The binned
scatterplot has 5 zoom levels.

(a) Five coordinated visualizations showing geographical and temporal dis-

tribution of user checkins and top users.

(b) Four linked visualizations showing departure and arrival delays, carriers,

yearly and monthly distribution of flights.

Fig. 1. Visualizations for the datasets used in the study.

Operation Control Condition Delay Condition

brush & link 20 ms 520 ms
select 20 ms 520 ms
pan 100 ms 600 ms

zoom 1000 ms 1500 ms

Table 2. Average latencies for interactive operations, across conditions.

3.4 Study Procedure

We recruited 16 subjects from the San Francisco Bay Area. All par-
ticipants had experience analyzing data using systems such as Excel,
R and Tableau. We instructed the participants to perform two analysis
sessions, one dataset each. Every participant experienced both latency
conditions, but not all combinations of latency and dataset; the same
dataset cannot be reused for different latency conditions due to learn-
ing effects. For each subject, one dataset had the default latency and
the other dataset had the injected 500 millisecond delay. To control
for order and learning effects, half of the subjects experienced delay
in the first session and the other half experienced delay in the second
session. The order of the dataset analyzed was also counterbalanced.

We first gave each subject a 15-minute tutorial on imMens for each
of the two analysis scenarios, teaching them how to interact with the
visualizations under the respective latency condition. Subjects then
spent approximately one hour exploring both datasets. They could
spend a maximum of 30 minutes on a single dataset, but could stop
their analysis at any time if they felt nothing more could be found. At
the end of each study, we conducted an exit interview. We did not
inform the subjects about the injected delay in one of the two sessions.

We considered carefully the challenge of evaluating subjects’ per-
formance when designing the study procedure. Compared with solv-
ing a tightly-specified problem, visual analysis is open-ended and
lacks clear-cut performance metrics. To this end, we were inspired
by the insight-based evaluation methodology proposed by Saraiya et
al. [37, 38]. A fundamental premise of visualization research is that
“the purpose of visualization is insight, not pictures” [10]. Insight-
based evaluations collect qualitative data about the knowledge discov-



Event Explanation Parameters Querying Event

brush mouse over a single bin in a one-dimensional plot bin index, data dimension yes
select click on a single bin in a one-dimensional plot bin index, data dimension yes
range select click and drag over multiple bins in one or more dimensions bin indices, data dimensions yes
zoom navigate to higher or lower levels of data resolution zoom level, data dimensions yes
pan navigate to areas of a visualization outside the current viewport number of bins panned for each

data dimension
yes

unique data tile fetch a data tile from the server to update visualizations, this
event can be indirectly triggered by any of the above events

data tile ID no

clear remove selection none no
log transform toggle the scales of visualizations between linear and log-scale none no
color slider change the upper and lower bounds of color mapping upper and lower bounds no

Table 3. Application events. Only querying events are subject to additional latency. We logged both triggered and processed querying events.

ery process, either through a think-aloud protocol [15] or by asking
participants to keep a diary in a longitudinal study.

As asking subjects to take notes could disrupt the flow of analysis,
we decided to use a think-aloud protocol and record the subjects’ ver-
bal utterances. During each session, we observed the analysis process
and took notes to triangulate with audio-recorded data.

We asked subjects to report anything they found interesting, includ-
ing salient patterns in the visualizations, their interpretations, and any
hypotheses based on those patterns. Findings might include surprising
events, data abnormality, or confirmations of common knowledge and
intuition. The subjects did not have to verify the accuracy of these find-
ings. To help orient subjects, we provided three hypothetical examples
of findings for each dataset. The subjects were told that these find-
ings were not necessarily true and should be taken only as examples
of potential observations and insights. We encouraged the subjects
not to be constrained by these examples, and the subjects reported di-
verse findings beyond the scope demonstrated by the examples. For
the Brightkite dataset of mobile check-ins, the examples included:

• Brightkite has a significant presence in Japan despite Japan’s rel-
atively small population.

• A user checked in along the African coast over a period of three
months.

• User A makes most of his check-ins in Alaska, while user B
checks in all over the world, mostly in the summer.

Examples for the dataset of airline flight delays included:

• Airline X has more flights than any other airline, except in 2008.

• Specific flights in the 1990s depart late but arrive early.

• Airline Y stopped operating in 2001, and re-emerged in 2006.

All sessions were run in Google Chrome v.29.0.1547.65 on a quad-
core 2.3GHz MacBook Pro (OS X 10.8.2) with per-core 256K L2
caches, shared 6MB L3 cache and 8GB RAM. The test machine had an
NVIDIA GeForce GT 650M graphics card with 1024MB video RAM.

3.5 Interaction Logs

To analyze user behavior, we recorded all the mouse events along with
timestamps. In addition, we logged nine higher-level, more inter-
pretable application events together with associated parameters. These
application events are: brush, select, range select, pan, zoom, clear,
unique data tile, log transform, and color slider. Table 3 explains the
meaning of these application events and their associated parameters.
Five of these application events (brush, select, range select, zoom, and
pan) are querying events, which involve both data query processing
and rendering. Three other events (clear, color slider, and log trans-
form) only require repainting the visualizations. Due to the use of de-
bouncing (see Section 3.2), a querying event may not actually be pro-
cessed by imMens and result in visual feedback. For example, when
users brush over a histogram at a rate much faster than the delay con-
dition frame rate, debouncing will take effect and drop some of these

brushing events to keep the visual interface usable and responsive. We
ensured that non-querying events were always processed.

We kept two separate logs for the application events in each session:
a log of all the application events triggered by a user, and a log of
events processed by imMens. Triggered events are indicators of user
behavior, while processed events reflect the visual feedback that was
actually seen by the subjects.

4 ANALYSIS OF INTERACTION EVENT LOGS

In this section we present the methods and results of analysis on user
behavior based on logged mouse events and application events. We
use linear mixed effects models to statistically analyze the effects of
latency on event rates. We report the coefficients of the latency factor
and p-values for significance tests. In addition, we provide an assess-
ment of user behavior by analyzing event transitions across different
experimental treatments.

4.1 Statistical Analysis: Mixed Effects Models

It is common for psychology and HCI studies to apply analysis of
variance (ANOVA) for significance testing. Two main factors in our
study are latency and analysis scenario (a combination of the dataset
and the configuration of interactive visualizations, sometimes short-
handed as “dataset”). As no single subject experienced all combina-
tions of factors, repeated measures ANOVA is subject to sampling bias
and higher chances of type I error [32]. An alternative is to treat the
analysis scenario as a fixed effect and perform two-way repeated mea-
sures ANOVA to model the subject variance. However, treating the
scenario as a fixed effect limits our ability to generalize the results to
analysis scenarios not included in the study [14].

Linear mixed effects models are a robust and interpretable alterna-
tive to ANOVA for many cases where the study design does not meet
the assumptions of ANOVA [5, 18, 27]. While mixed effects mod-
els are not (yet) as widely used in HCI and InfoVis research, they are
preferable due to their ability to handle missing values. In our case, we
treat the latency condition and the order of analysis (whether a dataset
is the first or the second seen by the subject) as two fixed effects, and
data and subject as random effects modeled using random intercept
terms. We are thus able to better generalize the results across subjects
and analysis scenarios.

The common practice for assessing significance within mixed ef-
fects models is to use likelihood-ratio tests [43]: we build a full model
(with the fixed effect in question) and a reduced model (without the
fixed effect in question), and compare these models to obtain p-values.
We use the lme4 R package [6] for our analysis.

4.2 Results

Each analysis session is identified by a subject ID, the analysis sce-
nario and the latency condition. For each session, we logged three
types of event sequences ordered by timestamps: mouse events (con-
sisting of mouse down, mouse up, mouse click), triggered application
events, and processed application events. Table 3 gives detailed de-
scriptions of the application events. For each type of event, we de-
rived the event rate (per minute) as dependent variables by normaliz-



Fig. 2. Event rate data for triggered and processed application events by latency and analysis scenario, annotated with medians and interquartile
ranges. Log transform, clear, color slider and unique data tile cache events are always processed.

ing event counts for each session against the session length. Figure 2
shows plots of these metrics across 32 sessions.

We first built mixed effects models to assess the effect of latency on
the time spent in an analysis session. The motivating question is: does
an additional 500ms delay affect the duration of user engagement?
Using likelihood-ratio tests we found that latency had no significant
effect on session length. Examining the raw data, most of the subjects
adhered to the 30-minute-per-session guideline and tried to spend as
much time as allowed to analyze the datasets.

We then assessed the latency effect for each of the event types. In
total, we analyzed seventeen metrics as dependent variables: fourteen
application events as shown in Figure 2 and three mouse events. For
each dependent variable, we built the reduced and full models, noted
the coefficients of delay in the full model (Figure 3), and performed
likelihood-ratio tests to assess significance. To sanity check, we also
performed a two-way repeated measures ANOVA with dataset as a
fixed effect. The significance results are identical with the mixed ef-
fects model analyses.

4.2.1 Mouse Movements Increase with Lower Latency

We found a strong effect for latency on the rate of mouse movement:
χ2(1,N = 32) = 7.861, p < 0.01. With increased latency, users de-
crease their activity, moving the mouse less. In this data, mouse move-
ments are most often low-level indicators of brushing and linking. We
did not find significant effects on mouse down and mouse up events.

4.2.2 Latency Affects Triggered Brushes, Shifts User Strategy

We found a significant main effect for latency on triggered brush rate:
χ2(1,N = 32) = 5.2932, p< 0.05. We did not find significant main ef-
fects on the other triggered event rates, although the effect on zooming
rate was marginally significant: χ2(1,N = 32) = 3.0228, p< 0.1. Fig-
ure 3 shows the latency coefficients for each event type in the mixed
effects models. The coefficients represent the changes in dependent

variables as latency decreases from the delay condition to the con-
trol condition. Overall, users shift strategies in response to varying
latency. The rates for brushing and range selection increase as la-
tency decreases. This pattern is less obvious in navigational events
such as zooming and panning. While the frequencies of panning and
color slider events are lower (negative coefficient) under the low la-
tency condition, the effects are not significant.

4.2.3 Processed Querying Events Increase with Low Latency

For processed events, we found significant main effects of latency for
all event types except clear, log transform and color slider. In addition,
latency had a significant main effect on the number of unique data tiles
cached, implying reduced dataset coverage in the delay condition. We
did not find any significant effects for order, or for interaction effects
between latency and order. Figure 3 reports the detailed test scores.1

Due to the added latency and event debouncing, we expect decreased
rates for processed events in the delay condition and so less responsive
visual feedback to the subjects. The positive delay coefficients for
processed events in Figure 3 corroborate these findings.

4.3 Event Sequences

We also analyzed the ordered event sequences for behavioral patterns.
Plotting event timelines resulted in excessive visual information and
no salient patterns emerged. Instead, we construct transition graphs
where the nodes are the event types and the links represent aggregated
first-order transitions between events across all sessions. We visualize
the resulting directed graphs using a matrix diagram (Figure 4).

We find that subjects in the delay condition are less likely to trigger
consecutive brush actions. A mixed effects model for the count of
per-user consecutive brushes confirms that this effect is significant:

1The interaction logs are available at http://goo.gl/fGh1NM. The

aggregated data file and R scripts to reproduce the results are available at

http://goo.gl/aj0myF

http://goo.gl/fGh1NM
http://goo.gl/aj0myF


Fig. 3. Significance test results and latency coefficients for each event type. Significant effects of latency are observed for triggered brush,
processed brush, processed select, processed range select, processed zoom and processed pan. A positive latency coefficient indicates increased
event frequency as latency decreases. Significance: ∗∗∗ p < 0.001; ∗∗ p < 0.01; ∗ p < 0.05; . p < 0.1;

Fig. 4. Transitions between application events by analysis scenario and
latency condition. Circular area represents the number of transitions be-
tween pairs of event types. Gray circles represent transitions between
triggered events; blue circles between processed events. Rows repre-
sent source nodes and columns represent target nodes.

χ2(1,N = 32) = 5.4258, p < 0.05. Under the delay condition, user
strategies tend to shift towards continuous adjustment of color sliders,
which is not affected by the additional delay because it only involves
repainting the visualizations without any data processing.

It is also interesting to observe the role played by the dataset in
shaping user behavior. For the mobile check-ins dataset, zooming and
panning interleave significantly when there is no delay. This pattern is
not observed in the flight delays dataset.

5 ANALYSIS OF VERBAL DATA

Mouse and application event rates provide insight into users’ behavior
patterns. To evaluate the outcome of visual analysis, however, we need
to go beyond event logs and analyze qualitative data. Based on audio
recordings of subjects’ think-aloud protocol and our notes taken during
the study sessions, we conduct verbal analysis to assess the effects of
latency on knowledge discovery. We segment and code the protocols
to produce quantified measures of cognitive events. We then build
mixed effects models to assess significance and visualize transitions
between verbal categories to understand exploration strategy.

5.1 Segmentation

We manually transcribed the audio recordings to text scripts. The first
step to analyze these transcripts is to determine the appropriate level
of granularity by segmenting the protocol [12]. For example, consider
the following utterance:

“The day histogram doesn’t seem to be too useful except for letting me
know that there are normally 30 days in a month.”

We can treat this sentence as a unit of analysis, or break it down into
two propositions (a proposition is usually in the form of a subject-
verb-object structure):

“The day histogram is not too useful”

“There are normally 30 days in a month”

The choice of a grain size can be a subtle and complex decision [12].
We chose a proposition as a unit of analysis because coarser grains
such as sentences contain varying amounts of information, making
calibration across subjects difficult. We made the decision that the
number of entities in a predicate should not affect the segmentation
process. For example, consider the following sentence:

“the most traveled traveler actually traveled to China, Alaska, Japan,
US on the west coast like San Francisco maybe, and then South Amer-
ican like Brazil maybe, I’m not too sure... oh Mexico. And then went
to Australia, well not really in that particular order.”

We treated the entire sentence as one proposition because the subject
was really focusing on a single composite: the places the traveler had
been to. Furthermore, the number of places enumerated here could
vary depending on the underlying data and how many the participant
felt like reporting. On the other hand, in the case of



Fig. 5. Verbalization rate for each category by latency and analysis scenario, annotated with medians and interquartile ranges.

“in the hour histogram, 5am is the lowest, 7-8pm is the highest”,

we treated the sentence as two propositions because it contains two
pieces of information: the hours at which the minimum and maximum
number of check-ins occurred.

5.2 Coding

After segmenting the protocols, we focused on coding the propositions
into categories. Initially, we tried to extract pieces of knowledge (“in-
sight”), following the insight-based methodology [37]. Two potential
problems surfaced. First, it did not seem that all insights should be
considered equal. For example, three different subjects made each of
the following reports about airlines (identified by two-letter codes):

• Many new airlines emerged around the year 2003.

• HP started in 2001, AS in 2003, PI in 2004, OH in 2003.

• OH started in 2003, and they’re doing pretty well in terms of
delays.

The three sentences are similar yet contain important differences.
The first sentence is a basic generalization; the second is a chain of
related specific propositions; and the third contains two propositions,
one about the new airline, another about the airline’s delay perfor-
mance. We thought it was especially crucial to distinguish the first
two cases because counting the propositions alone would only capture
one aspect of the insights uncovered.

Secondly, since we are interested in understanding the potential im-
pacts of latency on analytical behavior and our goal is not to evaluate a
visualization design or system, focusing exclusively on “insights” can
be limiting. We thus need to consider coding categories that account
for interesting information about subjects’ cognitive behavior.

Based on these considerations and on our collected transcripts, we
iteratively developed a coding scheme with seven categories: obser-
vation, generalization, hypothesis, question, recall, interface, and sim-
ulation. These categories align well to codes used in prior work for
content analysis of comments posted in collaborative visual analysis
systems [21, 41]. We elaborate on these categories below.

• Observation: an observation is a piece of information about the
data that can be obtained from a single state of the visualization
system. An observation can be made at the visual level or the

data level. For example, “I see a bump here around 1-2 pm,
people are checking in a bit after lunch”. Here there are two
propositions, the first one is an observation directly read off of
the visualization, the second is an observation at the data level.
We made the decision to code such propositions as a single ob-
servation for two reasons. First, the propositions are really de-
scribing the same thing; second, some subjects may not literally
verbalize what they perceive and only report at the data-level.

• Generalization: a generalization is a piece of information ac-
quired from multiple visualization states, often via interaction.
Examples of generalizations include “Most of these airlines have
pretty solid flight numbers month over month”, or “I don’t see
any difference between the people who are more frequent of the
top 30 and the less frequent of the top 30”.

• Hypothesis: a hypothesis is an inference or a conjecture about
the data. A hypothesis may be made before a unit task to steer
exploration or as a conjecture to explain an observation or gener-
ation. Examples include “more like I think [the number of check-
ins] is more correlated with Internet use or some component of
economic development”.

• Question: a question is an indication of desire to examine certain
aspects of the data. A question does not have to end with a ques-
tion mark. For example, in the following sentence, “I wonder
if also people just stopped delaying flights but just start cancel-
ing them, so then we might want to look at data that shows the
number of cancellations, so that in combination with this.”. The
participant first proposes a hypothesis, then poses a question.

• Recall: a recall is prior knowledge or personal experience
brought into working memory, for example, “I just happen to
know it’s [Thanksgiving] the most traveled day of the year”.

• Interface: subjects sometimes make comments about how to im-
prove or revise the visualization interface, for example, “just
from a UI standpoint, I don’t need this precision here, if it’s just
1k, I think it’s OK for it to say 1 [instead of 1.0]”.

• Simulation: subjects perform mental simulations [30, 40] of al-
ternative visual representations not shown in the study to aid the



Fig. 6. Significance test results and latency coefficients for each verbal category. Significant effects of latency are found for observation rate,
generalization rate, hypothesis rate, generalization rate (multiple visualizations), and observation rate (multiple visualizations). A positive latency
coefficient indicates increased event frequency as latency decreases. Significance: ∗∗∗ p < 0.001; ∗∗ p < 0.01; ∗ p < 0.05; . p < 0.1;

thinking process, for example, “so you know if I imagine a 3D
histo... a frequency distribution diagram, like a normal distri-
bution, it’s like the normal distribution is really wide, like the
variance is really really wide here”.

The first author performed the bulk of the coding. To reduce bias,
the coder consulted with the second author and iteratively revised fin-
ished codes to ensure consistency across coding sessions. We counted
the number of propositions per session for each category, and nor-
malized by session duration to compute event rates. We additionally
subdivided the rates of observation and generalization by the number
of visualizations involved. When an observation or a generalization is
made based on a single view, no interaction is required. Insights drawn
from multiple views require brushing and linking across the visualiza-
tions. Unlike Saraiya et al. [37], we did not assign quality scores to
the coded protocols, as the goal of visual analysis is open-ended.2

5.3 Results

Our analysis focused on eleven metrics: observation rate, observation
rate (single view), observation rate (multiple views), generalization
rate, generalization rate (single view), generalization rate (multiple
views), hypothesis rate, question rate, recall rate, interface rate, and
simulation rate. Figure 5 plots these metrics across 32 sessions. Not
surprisingly, observations and generalizations accounted for the ma-
jority of subjects’ verbalizations.

5.3.1 Lower Latency Encourages Insight Generation

We again used mixed effects models to test the effects of latency. The
models found significant main effects of interactive latency on four
metrics: observation rate, generalization rate, hypothesis rate and gen-
eralization rate (multiple views). The effect on observation rate (mul-
tiple views) was marginally significant. Figure 6 presents the test re-
sults.3 Two-way repeated measures ANOVA produces identical sig-
nificance results.

Figure 6 shows the latency coefficients for each coded category in
the mixed effects models. The coefficients represent the changes in de-
pendent variables as latency decreases from the delay condition to the
control condition (+0ms). In general, the subjects perform more verbal
reports across all categories except one. The subjects tend to comment
more on the visualization interface under the delay condition.

2The transcripts are available at http://goo.gl/mdyQ1T, and the cod-

ing results are available at http://goo.gl/EOBFPM
3 The aggregated data file and R scripts to reproduce the results are available

at http://goo.gl/aj0myF

Fig. 7. Transitions between verbal categories by analysis scenario and
by latency condition. Circular area represents the number of transitions
between from category to another. Rows represent source nodes and
columns represent target nodes.

5.3.2 Initial Exposure to Delay Dampens Later Performance

We found significant interaction effects between latency and order for
observation rate (χ2(1,N = 32) = 4.803, p < 0.05, interaction coef-

ficient = −1.2944) and generalization rate (χ2(1,N = 32) = 4.7204,
p < 0.05, interaction coefficient =−0.20485). Delays experienced in
the first session affect subjects’ subsequent performance; even when
the delay is removed in the second session, a negative impact on user
performance persists.

5.4 Transitions between Verbal Categories

To investigate potential changes in users’ exploration strategies, we
calculated aggregate transitions between verbal categories, shown as a
matrix diagram in Figure 7. Observation is the most common category
and users tend to report multiple observations in sequence. Interest-

http://goo.gl/mdyQ1T
http://goo.gl/EOBFPM
http://goo.gl/aj0myF


ingly, the rate of transitions between observation and other data-related
categories (“generalization”, “hypothesis” and “question”) in both di-
rections are significantly reduced in the delay condition (χ2(1,N =
32) = 12.309, p < 0.001). This result indicates that not only do sub-
jects perform knowledge discovery at a higher rate under low latency
conditions, their explorations are arguably more dynamic, engaging in
sensemaking loops of observing, generalizing and hypothesizing.

6 DISCUSSION

Our experimental results for both event logs and verbalizations provide
new insights into the effects of latency on exploratory visual analysis.

6.1 Exploration Strategy

Our analysis of interaction event logs provides evidence of users shift-
ing strategies when the latency changes. We report significant effects
in which increased latency reduces mouse movement and triggered
brush rates. On the other hand, the effects on zooming and panning
rate are not significant.

We hypothesize that panning rate is not affected because the delay
only applies to the plotting of data, not the background map images.
User thus could reposition the map interactively in a relatively unen-
cumbered fasion. Zooming, on the other hand, may fall into a different
cognitive time scale, as discussed in Section 2.2. Users thus may have
higher tolerances for the delay. According to Card et al.’s definition,
brushing is a “perceptual fusion” act: when brushing results in visual
feedback within 100ms or less, consecutive visual updates fuse into
one percept. Subjects’ verbal reports corroborate this finding: “this is
like a nice movie here” (P6), “I think it’s obvious that once I have an
animated gif I can stare at it” (P4). The added delay likely impedes
this fusion effect. The injected delay also slows the system response
time by a factor of 25 over the ~20 ms baseline. As a result, when it
becomes costly to perform brushing and range selection, users change
their behavior to reduce short-term effort. In contrast, zooming may
take place at the “unprepared response” time scale; the relative in-
crease in latency accounts for only half of the baseline.

A potential reason for decreased performance in the delay condition
is that the less responsive interface dampens user motivation. How-
ever, latency had no significant effect on session length or question
rate, an indication that users had similar levels of interest in the data
under both latency conditions. We hypothesize that the shift in ex-
ploration strategy together with the effect of debouncing impacts user
performance. Since we found no significant effects on observation
rate and generalization rate based on a single visualization view, the
differences in performance can be attributed to observation and gen-
eralization rates involving multiple views. Given that insights drawn
from multiple visualizations depend heavily on brushing and selecting,
user performance is adversely affected with the additional delay.

6.2 User Perception of Delay

At the end of each study, we asked subjects if they noticed anything
different about the system between the two sessions. While many par-
ticipants clearly observed the difference in latency, 6 out of 16 subjects
did not report a noticeable difference in terms of system responsive-
ness. Out of these six subjects, half experienced delay in the first ses-
sion and half analyzed the mobile check-in dataset first. One subject
(P9) even remarked:

“One thing that jumps out at me then is the fact that both of these
things (datasets) were equivalently responsive, despite the scale of the
second [dataset] is like .. you said, one versus a hundred? but yeah in
terms of responsiveness the two kind of feel the same.”

We informed subjects at the end of the study that we were investigating
potential impacts of latency on user behavior. 15 out of 16 subjects did
not think the delay, whether perceptible or not, had any influence on
their interactions. Our interpretation of such feedback is that the sub-
jects did not deliberately choose different strategies. The affordances
and constraints of interactive interfaces, however, often influence cog-
nitive behavior without the need for mindful planning and deliberation
[42].

6.3 Implications for System Design

Our study confirms that an injected delay of half a second per oper-
ation adversely affects user performance in exploratory data analysis.
To conclude that high latency is bad, however, would be an over sim-
plification. As the experiment results demonstrate, some operations,
such as zooming, are less sensitive to delay than others. In optimizing
system performance, we can take such observations into considera-
tion. Traditionally, visualization system design often takes a modular
approach: the visualization pipeline is divided into stages with dedi-
cated components for data management, scene graph construction and
rendering. Optimization efforts have largely centered around each of
these pieces separately. For example, a number of efforts are con-
cerned with speeding up data processing with little consideration of the
corresponding user interface design. Our study suggests the value of
taking a user-centric approach to system optimization. Instead of uni-
formly focusing on reducing latency for each of the processing stages
in the visualization pipeline, a potential optimization strategy is to ana-
lyze the interaction space supported by the visual interface and balance
computational resources between interactive operators. For example,
more aggressive caching or prefetching methods may be employed for
operations sensitive to small variations in latency, such as brushing
and linking.

7 FUTURE WORK AND CONCLUSION

In this research, we have found that interactive latency can play an im-
portant role in shaping user behavior and impacts the outcomes of ex-
ploratory visual analysis. Delays of 500ms incurred significant costs,
decreasing user activity and data set coverage while reducing rates of
observation, generalization and hypothesis. Moreover, initial exposure
to higher latency interactions resulted in reduced rates of observation
and generalization during subsequent analysis sessions in which full
system performance was restored.

In addition, our work demonstrates an operationalized procedure
for the analysis of verbal data collected through think-aloud protocols.
We contribute coding categories that capture various types of verbal
utterances. These categories can potentially be useful in future studies
of qualitative experiment data from exploratory data analysis.

One limitation of our study is that we only collected event logs
and verbal data. Gaze data from an eye-tracker could be a valuable
adjunct. Analyzing where the subjects were looking might provide
additional insights into their exploration strategy. For example, under
higher latency, subjects might plan more by scrutinizing visualizations
carefully and relying more on working memory. We leave such eye-
tracking studies to future work.

Our study also presents evidence that the effects of interactive la-
tency on exploratory visual analysis go beyond the simplistic assertion
that low latency uniformly improves usability and performance. The
same amount of delay can exert varying degrees of influence on differ-
ent interactive operators, in turn affecting higher-level cognitive strat-
egy. An important task for future work is to investigate more precise
time scale thresholds for each of the major interaction techniques in vi-
sualization. Another interesting study is to analyze user behavior with
the injected additional delays as a fixed percentage of the time scale
thresholds identified for each operation. When designing interactive
analysis systems, researchers should not only try to reduce latency, but
also be aware of differential effects for different interactive operations.
When computational resources are constrained, careful decisions are
needed to determine an optimized allocation of resources.

Finally, the exploratory analysis tasks are completely open-ended
in our study. Users thus may abandon an exploration path if the inter-
action cost appears too high. It would be interesting to investigate user
behavior with more constrained tasks in follow-up experiments.
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