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Section 1: Features 

Commands 
We exported 100 million events which contained 1949 unique commands from the database in May 
2018. The command frequencies follow a long-tail distribution: a few commands are frequently used, 
whereas many commands are rarely used. We inspected the distribution of commands ordered by 
frequencies as a data quality check, particularly those at the head of the distribution. Examples of the 
most frequent commands are Open, Move, and Crop. The actual number of unique commands in the 
database is larger than the number of menu items in the PS interface (about 1400), due to 
non-standard commands like Photoshop (PS) Actions , and multilingual versions of the same 1

command. Many of the infrequent ones are the user-defined Actions that are personal rather than 
universal and thus are not useful for us.  
 
We also note that the command name alone does not always contain enough semantic information to 
fully disambiguate user intention or the task at hand, however. For example, Brush Tool, one of the 
most frequently used commands, can be used to either paint colors on canvas or edit a layer mask.  
 
Grouping these events by session identifier and ordering them by timestamp, we reconstructed 169,387 
sessions. We specifically define a session to be a temporal sequence of events triggered by a user 
when completing a PS task. 
 
We used word2vec to learn a vector for each command. We conducted a sanity check of the 
embedding space using the Google Embedding Projector with t-SNE to inspect some of the clusters in 
the interface, and found that the structure of this space was indeed plausible. For example, in Figure 1, 
the red circle contains many commands for changing layer blending options. 

1 Actions and the Action Panel in Photoshop: https://helpx.adobe.com/photoshop/using/actions-actions-panel.html 
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Figure 1: Embedding space neighborhood of Linear Burn command. 

 
 
 
Figure 2 shows the neighborhood around the Brush Tool command, which also has plausible command 

names such as Eyedropper Tool and Mixer Brush Tool.

 
Figure 2: Embedding space neighborhood of Brush Tool command.  
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Finally, Figure 3 shows the neighborhood of the New Color Fill Layer command, which creates a new 
adjustment layer. Again, nearby commands such as Modify Color Fill Layer and Modify Levels Layer 
seem to capture reasonable similarity.  
 

 
Figure 3: Embedding space neighborhood of New Color Fill Layer command 
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Layers 

Example of layer hierarchies 
Layer hierarchy examples from three sessions (S1, S2, S14).  The annotations on the left show 
examples of layer relationships and the corresponding layer similarities. 

 
Figure 4: Layer hierarchy examples. 
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The layer similarity feature computation requires complete information about the layer hierarchy as it 
has evolved up to any specific time point, so it is derived using information spread across multiple 
individual event attributes.  

Equations to compute the layer similarity. 
The overall equation for layer similarity between two layers A and B:  If A and B are identical layers, the 
similarity is maximum (1.0); otherwise, it is the sum of layer similarity for duplicate layers, adjustment 
layers,  and layer group, capped by 1.0.

 
 
The similarity for duplicate layer is computed as follows.  

 
The similarity for adjustment layer is computed as follows.  

 
 
The similarity for layer group is computed as follows. The length of path between A and B in the layer 
hierarchy is denoted as d.  Most cases are direct siblings (d=2), and the layer similarity would be 0.5. 
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Section 2: Data collection 
 

Table 1: Summary of task type 

Task type #Sessions in 1st round #Sessions in 2nd round Total 

Poster creation 4 4 8 

Portrait retouching 3 3 6 

Special effect creation 1 1 2 
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Table 2: 8 collected sessions in the first round 

Session ID Participant ID Task Type Reference Image #Events Usage in model 

S1 P1 Poster creation 

 

275 Training and 
validation set 

S2 P2 Poster creation 

 

391 

S3 P3 Portrait 
retouching 

 

648 

S4 P4 Special effect 
creation 

 

130 

S5 P5 Portrait 
retouching 

Same as S3 172 

S6 P5 Portrait 
retouching 

 

29 

S7 P6 Poster creation 

 

1064 

S8 P7 Poster creation Same as S1 179 
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Table 3: 8 collected sessions in the second round. 

Session ID Participant ID Task Type Reference Image #Events Usage in model 

S9 P8 Portrait 
retouching 

 

428 Training and 
validation set 

S10 P8 Portrait 
retouching 

 

180 Test set 

S11 P9 Poster creation 

 

261 Training and 
validation set 

S12 P10 Poster creation 

 

323 Test set 
 

S13 P11 Special effect 
creation 

 

542 

S14 P5 Portrait 
retouching 

Same as S9 426 

S15 P12 Poster creation Same as S11 380 

S16 P13 Poster creation Same as S12 297 Training and 
validation set 
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Section 3: Hyperparameter Tuning for SVM 
We briefly review how a trained SVM model predicts a label given an event. It uses a kernel function 
that takes the feature vector as input and gives signed distance from the data point to a separating 
hyperplane as output, which is then converted to the probability of true prediction. Finally, it compares 
this probability score to a threshold t (model hyperparameter): if probability is greater than t, then this 
event is predicted as boundary. 
 
There are two hyperparameters in our model: window size k, the number of previous events used in the 
feature vector, and threshold t, to determine the probability value where an event is predicted to be the 
boundary. We train the model on the training set, and measure performance on the validation set to 
tune these hyperparameters, following common practice in machine learning. 

Window size k 
For each window size k from 1 to 10, we assess model performance after model training by computing 
and plotting its receiver operating characteristic (ROC) curve, shown in the following figure. 
The ROC curve is drawn by varying the hyperparameter threshold t from 0 to 1 and plotting a point on 
the curve for each value of t. The x axis is the false positive rate, and the y axis is the true positive rate 
for that threshold value.   The area under curve (AUC) of a ROC curve indicates the probability that the 
model will rank a randomly chosen boundary event higher than a randomly chosen non-boundary 
event. A common interpretation is that the larger the area is, the better performance the model has.  
From qualitative inspection of the figure, we can see that the 10 curves are closely intertwined with 
each other, and they are all far above the diagonal curve representing random guesses, indicating that 
they are similarly good classifiers.  Quantitatively, we can see that the AUCs are also highly similar 
(min: 0.938, max: 0.962). 
 
We conclude that window size does not influence model performance, and thus we choose k=1 to 
reduce the size of feature vectors. 

 
Figure 5: ROC curves 
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Threshold t 
After choosing the window size, we investigate the performance of the model with k=1 under different 
threshold values.  We plot precision (red line) and recall (blue line) against threshold t (x-axis) in the 
following figure.   The trade-off between precision and recall is easy to spot: as threshold increases, 
precision increases but recall drops. Considering the downstream applications of the segmentation 
model, we favor recall over precision. That is, we are willing to trade precision for higher recall because 
there are many fewer positive labels (boundaries) than negative labels (non-boundaries) in the dataset. 
It is important to correctly identify as many boundaries as possible, and false negatives (boundaries 
predicted as non-boundaries) are undesirable as it is not easy for end users to identify these missed 
boundaries. On the other hand, false positives (predicting non-boundaries as boundaries) are less 
detrimental: although these errors lead to over-segmentation of the logs, users can quickly dismiss 
them through an interactive interface.  We use the F2 score (thick black line), which weighs recall twice 
as much as precision, to quantify this trade-off choice.  
 
We find a clear winner, t=0.24, which yields the highest F2 score (0.74), as the threshold for our 
lowest-level segmentation.  The corresponding recall is 0.84, and precision is 0.50. 
 

 
Figure 6: Performance-threshold curve  
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Section 4: Results 

Labeling interface 
Figure 7 shows the interface used by paper authors when labeling the sessions.  It shows the logged 
attributes (layer, command, image content, duration) and a few derived attributes such as the diff 
image. 

 
Figure 7: Labelling interface 
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Visualization of sessions in test set 
In the main paper we show and inspect 2 out of the 5 sessions (S10, S15) in the test set, and here we 
show the other 3 test sessions (S12, S13, S14). We include each of the 16 sessions as high-resolution 
individual PNG files in supplemental materials as well. 
 
Figure 8 shows the visualization of 
session S12, for a poster creation task. 
The participant works in a highly 
organized way, which results in many 
levels in the human labels.  Most of the 
boundaries in human labels (gaps 
between grey chunks) for both low- 
and high-level are also predicted as 
boundaries in red and blue.  
 
There are a few low-level missing 
boundaries.  For example, in the top 
highlighted box, participant moved a 
sphere icon (there are 3 icons in total) 
using only one event, and then he 
continued adjusting the positions of the 
three icons.  The model fails to detect 
this boundary as it thinks the 
participant is still working on the icons 
in the icon layer group (high layer 
similarity) with highly similar 
commands (Move, FreeTransform). 
 
There are many over-segmentations. 
In the bottom highlight box, the 
participant tries to put a few layers into 
a layer group, but they were having 
trouble locating them in the layer 
panel, resulting in a series of events 
on unrelated different layers until he 
found the correct ones.  In this case, 
the user is having trouble keeping 
track of the interface, so it would 
naturally results less structure in the 
logged data. 
 

Figure 8: Session S12 
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Figure 9 shows session S13, a special effect task to turn a day image of a city street into night.  The 
computational results align with the human labels very well for this session, but it comes with a lot of 
over-segmentation.  In the highlighted box, the participant frequently copies and hides a layer as its 
backup as a way of smart version control: marking the milestone states such that they could go back at 
anytime later.  It involves a lot of layer switching and toggling, leading to many single-event low-level 
chunks in the computed results. 
 
However, in the high-level chunks (red), the model successfully removes the over-segmentation while 
keeping the true boundaries in the human labels. 
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Figure 9: Session S13, special effects task. 
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Figure 10 shows session S14, a portrait retouching task to restore an old photo.  For this session, there 
are noticeably less chunks in both computed results and human labels.  It is also noticeable that the 
precision is high and recall is low (compared to other sessions).  The many missing boundaries 
(highlighted) happen during the first half of the session, where the participants were fixing cracks on 
different areas on the photo (upper part → head and face → bottom left  → back to face → clothes) but 
on the same layer.  Each event only fixes a small amount of pixels, which leads to the model’s failure to 
capture the change of semantic areas of the photo.  In the second half of the session, where the 
participants were working on the eyes using multiple copy-and-paste phases, the model is able to find 
true structures that aligned with the human labels. 
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Figure 10: Session S14, portrait retouching task. 
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Section 5: Rule-based Model 
In the early phase of the project, we considered a few rule-based models before coming up with the 
two-stage model described in the main paper.  We present one of them in this section. 
 
In the data collection sessions with Photoshop experts, we observed that when they switched to a new 
layer or use a different command, it is likely that they finished a subtask and started the next one, 
especially in poster creation tasks.   Therefore, we created a model that segment the event sequence 
whenever there is a layer switch or command switch.   Fig. 11 illustrates the model for session S1, a 
poster creation session.  Note that the visualization is different from the previous figures in this 
document as they were created in the early phase of this project.  Each row represents a layer in the 
session, and the rectangular blocks represent logged events, sorted by timestamps from left to right. 
The blue triangles are the ground-truth labels, while the red vertical lines are the predicted boundaries 
from the rule-based model.  We also shows a snapshot image of the current canvas when a “difference 
score” (computed with layer, command, and image difference) is high from the previous event.  We can 
see that there are many cases of over-segmentation (false positives) and missing boundaries (false 
negatives).  Fig. 12 shows part of a portrait creation session, where the user tends to create less layers 
and more likely to work on the same layer even if (s)he is doing a different subtask.  The errors of the 
rule-based models are higher in such tasks. 
 
 

 

 
Fig. 11: Illustration of a rule-based model on S1, a poster creation session.  The model segments at any 
events with a layer or command switch.  Events are sorted by time and shown from left to right.  The 
top screenshot is the left side of the whole image, the bottom one is the right side. 
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Fig. 12: Partial illustration of rule-based model on S3, a portrait retouching session. 
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