
Supplemental Materials for
“Data-driven Multi-level Segmentation of
Image Editing Logs”

Zipeng Liu zipeng@cs.ubc.ca
Zhicheng Liu leoli@adobe.com
Tamara Munzner tmm@cs.ubc.ca

Table of Contents

Section 1: Features 2
Commands 2
Layers 5

Example of layer hierarchies 5
Equations to compute the layer similarity. 6

Section 2: Data collection 7
Table 1: Summary of task type 7
Table 2: 8 collected sessions in the first round 8
Table 3: 8 collected sessions in the second round. 9

Section 3: Hyperparameter Tuning for SVM 10
Window size k 10
Threshold t 11

Section 4: Results 12
Labeling interface 12
Visualization of sessions in test set 13

Section 5: Rule-based model 18

1

Section 1: Features

Commands
We exported 100 million events which contained 1949 unique commands from the database in May
2018. The command frequencies follow a long-tail distribution: a few commands are frequently used,
whereas many commands are rarely used. We inspected the distribution of commands ordered by
frequencies as a data quality check, particularly those at the head of the distribution. Examples of the
most frequent commands are Open, Move, and Crop. The actual number of unique commands in the
database is larger than the number of menu items in the PS interface (about 1400), due to
non-standard commands like Photoshop (PS) Actions , and multilingual versions of the same 1

command. Many of the infrequent ones are the user-defined Actions that are personal rather than
universal and thus are not useful for us.

We also note that the command name alone does not always contain enough semantic information to
fully disambiguate user intention or the task at hand, however. For example, Brush Tool, one of the
most frequently used commands, can be used to either paint colors on canvas or edit a layer mask.

Grouping these events by session identifier and ordering them by timestamp, we reconstructed 169,387
sessions. We specifically define a session to be a temporal sequence of events triggered by a user
when completing a PS task.

We used word2vec to learn a vector for each command. We conducted a sanity check of the
embedding space using the Google Embedding Projector with t-SNE to inspect some of the clusters in
the interface, and found that the structure of this space was indeed plausible. For example, in Figure 1,
the red circle contains many commands for changing layer blending options.

1 Actions and the Action Panel in Photoshop: https://helpx.adobe.com/photoshop/using/actions-actions-panel.html
2

https://helpx.adobe.com/photoshop/using/actions-actions-panel.html

Figure 1: Embedding space neighborhood of Linear Burn command.

Figure 2 shows the neighborhood around the Brush Tool command, which also has plausible command

names such as Eyedropper Tool and Mixer Brush Tool.

Figure 2: Embedding space neighborhood of Brush Tool command.

3

Finally, Figure 3 shows the neighborhood of the New Color Fill Layer command, which creates a new
adjustment layer. Again, nearby commands such as Modify Color Fill Layer and Modify Levels Layer
seem to capture reasonable similarity.

Figure 3: Embedding space neighborhood of New Color Fill Layer command

4

Layers

Example of layer hierarchies
Layer hierarchy examples from three sessions (S1, S2, S14). The annotations on the left show
examples of layer relationships and the corresponding layer similarities.

Figure 4: Layer hierarchy examples.

5

The layer similarity feature computation requires complete information about the layer hierarchy as it
has evolved up to any specific time point, so it is derived using information spread across multiple
individual event attributes.

Equations to compute the layer similarity.
The overall equation for layer similarity between two layers A and B: If A and B are identical layers, the
similarity is maximum (1.0); otherwise, it is the sum of layer similarity for duplicate layers, adjustment
layers, and layer group, capped by 1.0.

The similarity for duplicate layer is computed as follows.

The similarity for adjustment layer is computed as follows.

The similarity for layer group is computed as follows. The length of path between A and B in the layer
hierarchy is denoted as d. Most cases are direct siblings (d=2), and the layer similarity would be 0.5.

6

Section 2: Data collection

Table 1: Summary of task type

Task type #Sessions in 1st round #Sessions in 2nd round Total

Poster creation 4 4 8

Portrait retouching 3 3 6

Special effect creation 1 1 2

7

Table 2: 8 collected sessions in the first round

Session ID Participant ID Task Type Reference Image #Events Usage in model

S1 P1 Poster creation

275 Training and
validation set

S2 P2 Poster creation

391

S3 P3 Portrait
retouching

648

S4 P4 Special effect
creation

130

S5 P5 Portrait
retouching

Same as S3 172

S6 P5 Portrait
retouching

29

S7 P6 Poster creation

1064

S8 P7 Poster creation Same as S1 179

8

Table 3: 8 collected sessions in the second round.

Session ID Participant ID Task Type Reference Image #Events Usage in model

S9 P8 Portrait
retouching

428 Training and
validation set

S10 P8 Portrait
retouching

180 Test set

S11 P9 Poster creation

261 Training and
validation set

S12 P10 Poster creation

323 Test set

S13 P11 Special effect
creation

542

S14 P5 Portrait
retouching

Same as S9 426

S15 P12 Poster creation Same as S11 380

S16 P13 Poster creation Same as S12 297 Training and
validation set

9

Section 3: Hyperparameter Tuning for SVM
We briefly review how a trained SVM model predicts a label given an event. It uses a kernel function
that takes the feature vector as input and gives signed distance from the data point to a separating
hyperplane as output, which is then converted to the probability of true prediction. Finally, it compares
this probability score to a threshold t (model hyperparameter): if probability is greater than t, then this
event is predicted as boundary.

There are two hyperparameters in our model: window size k, the number of previous events used in the
feature vector, and threshold t, to determine the probability value where an event is predicted to be the
boundary. We train the model on the training set, and measure performance on the validation set to
tune these hyperparameters, following common practice in machine learning.

Window size k
For each window size k from 1 to 10, we assess model performance after model training by computing
and plotting its receiver operating characteristic (ROC) curve, shown in the following figure.
The ROC curve is drawn by varying the hyperparameter threshold t from 0 to 1 and plotting a point on
the curve for each value of t. The x axis is the false positive rate, and the y axis is the true positive rate
for that threshold value. The area under curve (AUC) of a ROC curve indicates the probability that the
model will rank a randomly chosen boundary event higher than a randomly chosen non-boundary
event. A common interpretation is that the larger the area is, the better performance the model has.
From qualitative inspection of the figure, we can see that the 10 curves are closely intertwined with
each other, and they are all far above the diagonal curve representing random guesses, indicating that
they are similarly good classifiers. Quantitatively, we can see that the AUCs are also highly similar
(min: 0.938, max: 0.962).

We conclude that window size does not influence model performance, and thus we choose k=1 to
reduce the size of feature vectors.

Figure 5: ROC curves

10

Threshold t
After choosing the window size, we investigate the performance of the model with k=1 under different
threshold values. We plot precision (red line) and recall (blue line) against threshold t (x-axis) in the
following figure. The trade-off between precision and recall is easy to spot: as threshold increases,
precision increases but recall drops. Considering the downstream applications of the segmentation
model, we favor recall over precision. That is, we are willing to trade precision for higher recall because
there are many fewer positive labels (boundaries) than negative labels (non-boundaries) in the dataset.
It is important to correctly identify as many boundaries as possible, and false negatives (boundaries
predicted as non-boundaries) are undesirable as it is not easy for end users to identify these missed
boundaries. On the other hand, false positives (predicting non-boundaries as boundaries) are less
detrimental: although these errors lead to over-segmentation of the logs, users can quickly dismiss
them through an interactive interface. We use the F2 score (thick black line), which weighs recall twice
as much as precision, to quantify this trade-off choice.

We find a clear winner, t=0.24, which yields the highest F2 score (0.74), as the threshold for our
lowest-level segmentation. The corresponding recall is 0.84, and precision is 0.50.

Figure 6: Performance-threshold curve

11

Section 4: Results

Labeling interface
Figure 7 shows the interface used by paper authors when labeling the sessions. It shows the logged
attributes (layer, command, image content, duration) and a few derived attributes such as the diff
image.

Figure 7: Labelling interface

12

Visualization of sessions in test set
In the main paper we show and inspect 2 out of the 5 sessions (S10, S15) in the test set, and here we
show the other 3 test sessions (S12, S13, S14). We include each of the 16 sessions as high-resolution
individual PNG files in supplemental materials as well.

Figure 8 shows the visualization of
session S12, for a poster creation task.
The participant works in a highly
organized way, which results in many
levels in the human labels. Most of the
boundaries in human labels (gaps
between grey chunks) for both low-
and high-level are also predicted as
boundaries in red and blue.

There are a few low-level missing
boundaries. For example, in the top
highlighted box, participant moved a
sphere icon (there are 3 icons in total)
using only one event, and then he
continued adjusting the positions of the
three icons. The model fails to detect
this boundary as it thinks the
participant is still working on the icons
in the icon layer group (high layer
similarity) with highly similar
commands (Move, FreeTransform).

There are many over-segmentations.
In the bottom highlight box, the
participant tries to put a few layers into
a layer group, but they were having
trouble locating them in the layer
panel, resulting in a series of events
on unrelated different layers until he
found the correct ones. In this case,
the user is having trouble keeping
track of the interface, so it would
naturally results less structure in the
logged data.

Figure 8: Session S12

13

Figure 9 shows session S13, a special effect task to turn a day image of a city street into night. The
computational results align with the human labels very well for this session, but it comes with a lot of
over-segmentation. In the highlighted box, the participant frequently copies and hides a layer as its
backup as a way of smart version control: marking the milestone states such that they could go back at
anytime later. It involves a lot of layer switching and toggling, leading to many single-event low-level
chunks in the computed results.

However, in the high-level chunks (red), the model successfully removes the over-segmentation while
keeping the true boundaries in the human labels.

14

Figure 9: Session S13, special effects task.

15

Figure 10 shows session S14, a portrait retouching task to restore an old photo. For this session, there
are noticeably less chunks in both computed results and human labels. It is also noticeable that the
precision is high and recall is low (compared to other sessions). The many missing boundaries
(highlighted) happen during the first half of the session, where the participants were fixing cracks on
different areas on the photo (upper part → head and face → bottom left → back to face → clothes) but
on the same layer. Each event only fixes a small amount of pixels, which leads to the model’s failure to
capture the change of semantic areas of the photo. In the second half of the session, where the
participants were working on the eyes using multiple copy-and-paste phases, the model is able to find
true structures that aligned with the human labels.

16

Figure 10: Session S14, portrait retouching task.

17

Section 5: Rule-based Model
In the early phase of the project, we considered a few rule-based models before coming up with the
two-stage model described in the main paper. We present one of them in this section.

In the data collection sessions with Photoshop experts, we observed that when they switched to a new
layer or use a different command, it is likely that they finished a subtask and started the next one,
especially in poster creation tasks. Therefore, we created a model that segment the event sequence
whenever there is a layer switch or command switch. Fig. 11 illustrates the model for session S1, a
poster creation session. Note that the visualization is different from the previous figures in this
document as they were created in the early phase of this project. Each row represents a layer in the
session, and the rectangular blocks represent logged events, sorted by timestamps from left to right.
The blue triangles are the ground-truth labels, while the red vertical lines are the predicted boundaries
from the rule-based model. We also shows a snapshot image of the current canvas when a “difference
score” (computed with layer, command, and image difference) is high from the previous event. We can
see that there are many cases of over-segmentation (false positives) and missing boundaries (false
negatives). Fig. 12 shows part of a portrait creation session, where the user tends to create less layers
and more likely to work on the same layer even if (s)he is doing a different subtask. The errors of the
rule-based models are higher in such tasks.

Fig. 11: Illustration of a rule-based model on S1, a poster creation session. The model segments at any
events with a layer or command switch. Events are sorted by time and shown from left to right. The
top screenshot is the left side of the whole image, the bottom one is the right side.

18

Fig. 12: Partial illustration of rule-based model on S3, a portrait retouching session.

19

