
Identifying Frequent User Tasks from Application Logs
Himel Dev

Department of Computer Science
University of Illinois at Urbana-Champaign

hdev3@illinois.edu

Zhicheng Liu
Adobe Research

San Francisco, CA
leoli@adobe.com

ABSTRACT
In the light of continuous growth in log analytics, applica-
tion logs remain a valuable source to understand and analyze
patterns in user behavior. Today, almost every major soft-
ware company employs analysts to reveal user insights from
log data. To understand the tasks and challenges of the an-
alysts, we conducted a background study with a group of
analysts from a major software company. A fundamental ana-
lytics objective that we recognized through this study involves
identifying frequent user tasks from application logs. More
specifically, analysts are interested in identifying operation
groups that represent meaningful tasks performed by many
users inside applications. This is challenging, primarily be-
cause of the nature of modern application logs, which are
long, noisy and consist of events from high-cardinality set.
In this paper, we address these challenges to design a novel
frequent pattern ranking technique that extracts frequent user
tasks from application logs. Our experimental study shows
that our proposed technique significantly outperforms state of
the art for real-world data.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous; H.2.8. Database Management: Database Ap-
plications

Author Keywords
User Task; Application Log; Frequent Pattern Mining; Pattern
Ranking

INTRODUCTION
Application log data contain valuable information about user
behavior that can inform technical or business decisions. With
effective analysis of such data, marketers may be able to cor-
relate user behavior with marketing goals (e.g. successful
purchase) and improve promotion strategies; application de-
velopers may better prioritize features in product roadmaps,
discover potential bugs and make automatic recommendations
without interrupting users’ workflow. These valuable appli-
cations drive companies and organizations to employ data
analysts to reveal user insight from log data.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IUI 2017, March 13–16, 2017, Limassol, Cyprus.
Copyright © 2017 ACM ISBN 978-1-4503-4348-0/17/03 ...$15.00.
http://dx.doi.org/10.1145/3025171.3025184

To understand the tasks and challenges of the analysts, we
conducted a background study with a group of log analysts
from a major software company. Based on our study, we
find that identifying meaningful and frequent user tasks is
an important milestone in many log analysis scenarios. For
example, to recognize what features needs to be prioritized in
product roadmaps, product mangers urge to identify the major
user requirements, which can be revealed by examining user
tasks. Similarly, to automatically recommend workflows, it is
crucial to recognize user intent, which can be modeled based
on frequent tasks.

While identifying frequent user task is important, doing so for
large-scale, complex log data is challenging. The challenges
arise from two main sources: the volume and complexity of
the data, and the diversity in user behavior and domain context.
The current practice of identifying frequent user tasks involves
applying frequent pattern mining techniques such as frequent
itemset mining and sequential pattern mining [3, 4, 5, 12].
These techniques, however, are not customized for frequent
tasks and can not address the aforementioned challenges.

In this paper, we present a novel frequent pattern ranking
technique to extract frequent user tasks from application logs.
The key idea of our approach is to rank patterns based on
membership based cohesion, which prioritizes the patterns
whose events appear contagiously in the supporting sequences
with no or few outliers (events not belonging to the pattern).
We apply our technique on real-world log data and conduct
a user study to evaluate the effectiveness of our approach.
Our experimental study shows that our approach significantly
outperforms state of the art for a variety of standard metrics
such as NDCG and P/R@k.

In summary, our contributions are as follows:

• We conduct a three-phase background study to understand
the vitals of log analytics . Our study reveals many idiosyn-
crasies of log analytics that we present in the Objectives,
Data and Techniques sections.

• We formulate the frequent task identification problem using
a set of example-driven assumptions and propose a novel
frequent pattern ranking technique to solve this problem.
We present the details in the Identifying Frequent User
Tasks section.

• We conduct a user study to evaluate the effectiveness of our
approach using real-world data. We compare our approach
with state of the art using a standard set of metrics. We
provide the details in Evaluation section.

Figure 1. Statistics on the datasets we have analyzed

BACKGROUND STUDY
To understand the scale and complexity of log data and the
techniques and challenges of associated analysis, we con-
ducted a mixed-methods study consisting of three phases. In
the first phase, we conducted in-depth interviews to under-
stand the vitals of log analytics including the primary objec-
tives, characteristics of data and state-of-the-art techniques. In
the second phase, we performed some of the analysts’ work
routines to get a first-hand experience on both the data and
techniques. In the third phase, we conducted a pilot study to
get user feedback on the findings of our analysis. Note that we
recruited the same group of participants in the first and third
phase of study.

Participants
As this study requires understanding the vitals of log analytics,
the domain knowledge of participants is of critical importance.
To address this concern, we recruited two groups of people
who are practitioners and stakeholders of log analytics. The
first group consists of three analysts who work for a major soft-
ware company that sells multimedia and creativity software
products. The daily jobs of the analysts involve analyzing and
reporting user behavior on the company’s software applica-
tions. They execute queries to retrieve log data from Hadoop
servers, wrangle and analyze the data, and prepare presen-
tations on any insights they have found. The second group
consists of two product managers who are domain experts
on the software applications. We included product managers
because they work with a much larger set of users and offer
a high-level perspective on the common tasks shared by the
analysts.

OBJECTIVES, DATA AND TECHNIQUES
In this section, we discuss the findings of our background
study, which reveal many idiosyncrasies of log analytics.

Objectives
Based on our interviews, we recognize frequent task identi-
fication as one of primary objectives of log analytics. For
example, some analysts want to understand what users are
doing at a certain phase/period: “What do most users do in
their early projects?”. Likewise, some want to understand the
evolution of users: “Are users performing similar/different
tasks in their early and later projects?”. Again, some care

about the elements of a successful project: “What are some
common tasks present in successful (published) projects?”.
We note that many such analytics goals require identifying
and understanding frequent user tasks. Though we recognize
other relevant objectives of log analytics, such as determining
usefulness of a particular application feature, we focus on
identifying frequent user tasks as it is fundamental to both
analysts and managers we interviewed.

Data
Based on our first-hand analysis and the interviews, we identify
the following distinguishing characteristics of log data.

• The cardinality of event set is large. The number of pos-
sible user operations in a modern software application can
range from hundreds to tens of thousands. Each of these
operations triggers one or more events that are recorded in
application logs. Typically, logs are pre-processed to reflect
the user operations.

• A session can have an arbitrary length. While most users
use software applications for a few minutes or hours in a
session, others leave them open for days. It is common for
a session to contain several hundred events, albeit the upper
bound is much higher.

• There is substantial variety in user behavior. Users may
perform the same task in a variety of ways. This variety
arises from the presence of different operation combinations
that can be used to achieve the same outcome.

• Application logs are noisy. A sizable fraction of users
execute a rather hodgepodge of operations to perform an
intended task, which often includes operations that are not
required for performing the task. These misplaced opera-
tions act as a source of noise. Noise can also arise from
mistakes, i.e., unintended user operations.

Techniques
Because we focus on frequent task identification, we shall
only discuss the techniques that are relevant to this problem.
Based on our study, we find that the analysts apply frequent
pattern mining techniques such as frequent itemset mining
[3] and sequential pattern mining [4] on log data to identify
frequent user tasks. A major challenge of applying frequent

1 2

3 4

5 7

6 8

Figure 2. Event sequence fragments from eight distinct logs (corresponding to a photo editing application) shows instances of T1 (version management
task) and T2 (cropping task). The instances of T1 are highlighted in red font, with red vertical lines outlining the instance boundaries. The instances of
T2 are highlighted in blue font, with blue vertical lines outlining the instance boundaries. For T2, Paste implies Copy followed by Paste.

pattern mining techniques is the fact that such techniques
often generate a huge number of patterns [2]. For example, we
applied several classes of frequent pattern mining techniques
on real-world datasets, and the results (Figure 1) show that the
number of patterns can be overwhelming, even for very strict
classes such as closed patterns. Further, most of these patterns
are not very useful to the analysts as they do not represent user
tasks. Consequently, analysts face the formidable challenge
of manually exploring the patterns and their supporting logs
to identify the useful patterns representing user tasks. We
extensively study the literature of frequent pattern mining in
search of technique(s) that can address this problem. While we
find numerous works addressing the concern of finding useful
patterns, none entirely solves this problem, primarily due to
the concept of pattern usefulness being context dependent.
Indeed, patterns that are useful in one context, may not be
relevant in another. For this reason, the problem of finding
appropriate patterns representing user tasks remains open to
us.

IDENTIFYING FREQUENT USER TASKS
In this section, we discuss our problem formulation, review the
relevant concepts of frequent pattern mining and present our
solution to resolve the frequent task identification problem.

Problem Formulation
While the idea of user task is easy to understand, a formal
formulation in log analytics is absent. For example, one could
define it as a sequence of user operations to actualize user
intent. Another way is to define it as a set of user operations
to achieve some milestone. While the former considers order-
ing of operations, the latter does not. There are other such
factors (e.g., adjacency of operations) that one needs to con-
sider while defining user task. We define user task based on a

set of example-driven assumptions that we recognized during
our first-hand analysis and later confirmed with the analysts.
Before we report these assumptions (A1 to A4), we present
two well-acknowledged tasks (T1 and T2) that we shall use to
explain the assumptions.

T1: This task involves creating a new file from an existing one
via copy pasting. This is a naive version management strategy
commonly used by novice users to preserve the content of
a file while attempting exploratory operations. In Figure 2,
the instances of this task are highlighted in red font, with red
vertical lines outlining the instance boundaries.

T2: This task involves cropping an image and checking the
size of its dimensions. This is yet another common task per-
formed by many users to generate an image with specific
length and/or width. In Figure 2, the instances of this task are
highlighted in blue font, with blue vertical lines outlining the
instance boundaries.

A1: Operations corresponding to a task may or may not have
any associated ordering.

The first two event sequence fragments in Figure 2 show dif-
ferent operation orderings for T1. There are two alternative
operation sequences that can be executed to perform this task.
The first alternative is to (i) open the existing file, (ii) copy
items from the existing file, (iii) create a new file, and (iv)
paste items in the new file. The second alternative is to (i)
create a new file, (ii) open the existing file, (iii) copy items
from the existing file, and (iv) paste items in the new file.
While the operations corresponding to the task have some
partial ordering (open followed by copy followed by paste,
new followed by paste), there is no absolute order. The third
and fourth event sequence fragments in Figure 2 show two

operation orderings for T2. For this task, users may check the
image size either before or after cropping. Our discussion with
the analysts reveal that there are many such tasks where the
operation ordering is variable. While the aforementioned tasks
have two alternative operation orderings, other tasks may have
more than two alternatives.

A2: A user may execute a required operation multiple times
within the duration of a task.

The fifth and sixth event sequence fragments in Figure 2 show
repetition of operations for T1 and T2. Our first hand analysis
reveals that users often repeat operations in a loop till they
achieve the intended results. Within the task duration, a user
may repeat a required subset of operations in a loop.

A3: A user may perform multiple tasks in a single session.

The seventh and eigth event sequence fragments in Figure 2
show users performing at least two different tasks (T1 and T2)
in a session. In fact, most users perform many different tasks
in a session.

A4: To perform a task, a user executes the corresponding
operations contiguously, with no or few outliers (operations
that are not part of the task).

In all eight event sequence fragments of Figure 2, we see users
executing the operations of a task contiguously, without any
outlier (unnecessary operation). In some cases, users may
execute one or more unnecessary operations within a task by
mistake, yet, such occurrences should be few.

Frequent Pattern Mining
In this subsection, we review the concepts of frequent pattern
mining. There has been extensive research on this topic and
we essentially discuss the concepts relevant to our problem.

Preliminaries
We will be using the following definitions to discuss different
classes of frequent patterns.

DEFINITION 1. An event sequence S = [E1,E2, . . . ,Em]
(E i ∈ E) is an ordered list of events, where E denotes the
event dictionary and i denotes the order of event E i in S.

DEFINITION 2. A sequence database D= {S1,S2, . . . ,Sn}
is an unordered set of sequences.

DEFINITION 3. In our discussion, a pattern P is either (i)
a set of events whose members appear in random order, or (ii)
a sequence of events that appear as subsequence(s), in one or
more sequences in an event sequence database.

DEFINITION 4. The support set DP of a pattern P in a
sequence database D is the largest subset of D where P ap-
pears in all sequences belonging to Dp. The support of P is
quantified as the percentage ratio of the size of Dp and D.

DEFINITION 5. Frequent patterns F = {P1,P2, . . . ,Pf } is
a set of patterns (of same type) where the support of each
pattern in a given database is no less than a user-specified
threshold Θ.

DEFINITION 6. The occurrence window WP,S of a pattern
P in a sequence S refers to the interval(s) within S that contains
P.

DEFINITION 7. The minimum length occurrence win-
dow or minimum occurrence window W (L−)

P,S of a pattern P
in a sequence S refers to the minimum length interval(s) within
S that contains P. Here, the function L() returns length and
the superscript (L−) denotes minimum length.

W (L−)
P,S = argmin

WP,S

L(WP,S) (1)

Frequent Pattern Classes
We discuss different classes of frequent patterns (with ex-
amples in Table 1) based on two dimensions relevant to our
problem.

Order Dimension: Frequent patterns extracted from an event
sequence database can either be sets or sequences (of events).
A set based frequent pattern does not consider the order of
events in database sequences and is called a frequent itemset
[3]. In contrast, a sequence based frequent pattern consid-
ers the order of events in database sequences and is called a
sequential pattern [4].

ID Sequence
S1 [A,C,D]
S2 [B,C,E]
S3 [E,A,B,C]
S4 [B,E]
S5 [E,B,A,C]

(a) Input sequences

Class Patterns from Input Sequences
Frequent {A},{B},{C},{E},{A,B},{A,C},{A,E},
Itemset {B,C},{B,E},{C,E},{A,B,C},{A,B,E},

{A,C,E},{B,C,E},{A,B,C,E}
Cohesive {A},{B},{C},{E},{A,B},{A,C},{B,C},
Itemset {B,E},{A,B,C},{A,B,E},{A,B,C,E}
Sequential [A],[B],[C],[E],[A,C],[B,C],[B,E],
Pattern [E,A],[E,B],[E,C]
2-gram [B,C]
Episode [A],[B],[C],[E],[A,C],[B,C]

(b) Patterns with >= 40% support. For cohesive itemsets
and episodes, we used the ratio of pattern length (number
of elements in pattern) and occurrence window length as the
cohesion parameter, and set the threshold value to 1.

Table 1. Examples of frequent patterns

Cohesion Dimension: Cohesion or adjacency of pattern ele-
ments (events) in support set (supporting database sequences)
is a central concept in our problem. The pattern classes that
address the concern of cohesion includes N-gram, episode
and cohesive itemset. N-gram and episode are subclasses of
sequential pattern, whereas cohesive itemset is a subclass of
frequent itemset. An N-gram is a sequential pattern whose
elements appear contiguously in supporting sequences, with

no outlier. An episode is a sequential pattern, for which the
average length of minimum occurrence windows in supporting
sequences is smaller than a user-specified threshold [12]. A
cohesive itemset is similar except that it is a frequent itemset
[5].

Limitations
We study the state-of-the-art frequent pattern mining tech-
niques to determine if any of these techniques can solve the
problem of frequent task identification. We find that the exist-
ing techniques fail to satisfy one or more assumptions that we
reported (Table 2), and consequently fall short in solving the
problem.

• Order-sensitive patterns such as sequential patterns and fre-
quent episodes fail to satisfy assumption A1. More specif-
ically, if a task has many alternative operation orderings,
then none of these orderings could be frequent for a given
threshold.

• Cohesion-insensitive patterns such as frequent itemsets and
sequential patterns fail to satisfy assumption A4. More
specifically, these patterns do not distinguish between the
set of events or operations that appear adjacently and the set
of operations that appear randomly in supporting sequences.
For example, the subsets of top k popular operations may
appear in many sequences, however, the operations of these
sets may or may not be executed as a group to achieve some
milestone.

• Cohesion-insensitive patterns such as frequent itemsets and
sequential patterns also fail to satisfy assumption A3. In par-
ticular, these patterns may contain operations from several
tasks.

• Finally, the existing cohesion-sensitive patterns such as
frequent episodes and cohesive itemsets fail to satisfy as-
sumption A2. In these patterns, cohesion is determined
in terms of the lengths of minimum occurrence windows,
which fail to satisfy the assumption of a required operation
to be repeated arbitrary number of times.

State-of-the-Art A1 A2 A3 A4
Frequent Itemset × ×
Sequential Pattern × × ×
Frequent Episode × ×
Cohesive Itemset ×

Table 2. Limitations of state-of-the-art techniques in terms of four as-
sumptions. A1: Operations corresponding to a task may or may not have
any associated ordering. A2: A user may execute a required operation
multiple times within the duration of a task. A3: A user may perform
multiple tasks in a single session. A4: To perform a task, a user executes
the corresponding operations contiguously, with no or few outliers.

Membership Based Cohesion for Patterns
To address the limitation of existing approaches, we introduce
the idea of membership based cohesion for frequent patterns.
To introduce this idea, we first present the concept of outlier
based minimum occurrence window.

DEFINITION 8. The outlier based minimum occurrence
window W (O−)

P,S of a pattern P in a sequence S refers to the

interval(s) within S that contains P while containing minimum
possible outliers (i.e., elements not belonging to the pattern
P). Here, the function O() returns the number of outliers and
the superscript (O−) denotes minimum outlier.

W (O−)
P,S = argmin

WP,S

O(WP,S) (2)

DEFINITION 9. The minimum outlier based maximum
length occurrence window or minimum outlier based max-
imum occurrence window W (O−)(L+)

P,S of a pattern P in a se-
quence S refers to the maximum length interval(s) within S
that contains P while containing minimum possible outliers.
In other words, the minimum outlier based maximum occur-
rence window refers to the interval(s) that contain(s) P, and
includes as many elements of P as possible without including
any element not belonging to P. Here, the function L() returns
length and the superscript (L+) denotes maximum length.

W (O−)(L+)
P,S = argmax

W (O−)
P,S

L(W (O−)
P,S) (3)

For example, consider the sequences in Table 3. If we per-
form frequent itemset mining on these sequences with sup-
port threshold Θ = 0.5, we get itemsets such as {A,B,C} and
{D,E,F}. The minimum occurrence windows (according to
DEFINITION 7) of itemset {A,B,C} in S1, S2 and S3 are
marked with underlines. Contrast these to the minimum outlier
based maximum occurrence windows (according to DEFINI-
TION 9) which are marked with overlines. The former involves
minimizing window length, whereas the latter involves first
minimizing outlier count and then maximizing window length.

ID Sequence

S1 [A,A,A,B,B,B,B,B,C,C,C,D,B,B,E,F]

S2 [G,H,I,J,A,B,A,B,A,B,A,B,C]

S3 [D,F,X,Y,E,B,A,B,A,B,A,C,C]
Table 3. Example sequences

Membership Based Cohesion
We formulate the cohesion of a pattern as the signed difference
between the pattern’s length (number of elements in pattern)
and the median outlier count in its minimum outlier based
maximum occurrence windows or outlier based minimum
occurrence windows.

For example, consider the sequences in Table 3. If we perform
frequent itemset mining on these sequences with threshold
Θ = 0.5, we get itemsets such as {A,B,C} and {D,E,F}. The
length of both {A,B,C} and {D,E,F} is 3. There are no
outliers in the outlier based minimum occurrence windows of
{A,B,C} in S1, S2 and S3, and therefore, the median outlier
count is 0. According to our formulation, the cohesion score
of itemset {A,B,C} is 3 - 0 = 3. In contrast, the number of
outliers in the outlier based minimum occurrence windows

of {D,E,F} in both S1 and S3 is 2, and therefore, the median
outlier count is 2. According to our formulation, the cohesion
score of itemset {D,E,F} is 3 - 2 = 1.

Notice that, the average length of minimum occurrence win-
dows for itemset {D,E,F} is 5, which is smaller compared
to that of itemset {A,B,C}. According to state-of-the-art co-
hesive pattern ranking, itemset {D,E,F} is more cohesive
compared to itemset {A,B,C}. However, if we consider the
median outlier count in outlier based minimum occurrence
windows, the order is opposite. Our formulation of member-
ship based cohesion uses the second ordering. In other words,
it prefers small outlier count over small window length.

Our formulation of membership based cohesion uses pattern
length. There are two key reasons why we use pattern length
in cohesion formulation. The first one is to allow salient pat-
terns/tasks with more events/operations to get priority over the
short patterns/tasks. The second one is based on the fact that
the tasks with higher number of operations have higher room
for error/outlier, which needs to be accounted for accordingly.

Frequent Task Identification
To identify frequent user tasks, we first perform frequent item-
set mining on log dataset with a small threshold (e.g., 5%,
10%). Then, we rank the itemsets in descending order based
on the membership based cohesion score. As a matter of
fact, frequent itemset mining and the proposed ranking can
be performed simultaneously. We hypothesize that the top
itemsets with high membership based cohesion are likely to
be frequent user tasks. Notice that the top itemsets satisfy
all four assumptions (A1 to A4) that we reported. In partic-
ular, the use of outlier count in determining cohesion score
resolves the concern of assumption A2, without failing the
other assumptions.

EVALUATION
We evaluate the effectiveness of our proposed frequent task
identification technique using real-world data. Our evaluation
focuses on the following aspects of effectiveness:

• Q1. How effective is our pattern ranking technique in iden-
tifying frequent user tasks?

• Q2. How effective is our ranking technique compared to the
state of the art?

• Q3. How meaningful are the resultant patterns, i.e., the
potential frequent user tasks?

Dataset
We applied our frequent task identification technique on a real-
world log dataset. The logs are from a desktop based photo
editing application that has several million users. Two of the
analysts from our background study work with similar logs
originating from the same application. We took a represen-
tative sample of the logs to compile our dataset. Our dataset
has 10,000 event sequences and accommodates 1497 unique
events. The median length of sequence in the dataset is 35.

Method
Our evaluation method consists of two phases. In the first
phase, we performed frequent itemset mining and ranked the

resultant itemsets based on two different ranking criteria. In
the second phase, we selected a representative sample from
these itemsets and conducted a user study to evaluate the
potential of the selected itemsets to represent frequent user
tasks.

Phase I: Frequent Itemset Mining and Ranking
We applied frequent itemset mining on our log dataset us-
ing 10% support threshold and acquired 738 itemsets. From
these itemsets, we selected 540 itemsets with length >= 3 and
ranked those based on membership based cohesion. We used
standard competition ranking, i.e., “1224” ranking to rank the
itemsets [22] . We found that in the ranked itemsets cohesion
score rapidly dropped after the first few entries and based on
this observation, we determined a cut-off score (cut-off score
= 2) to categorize the itemsets into two groups. The first group
consists of the top 16 itemsets that are highly likely to be
frequent user tasks and the second group consists of the re-
maining itemsets. The rationale behind selecting 2 as a cut-off
score was to maintain a reasonable number of itemsets in user
evaluation as these evaluations are challenging for users.

In addition to our ranking, we ranked the 540 itemsets with
length >= 3 based on state of the art cohesive itemset min-
ing/ranking technique proposed at [5]. We used standard
competition ranking for this procedure as well.

Phase II: User Study
Based on the two rankings mentioned above, we selected 36
itemsets covering each of the following groups: (i) top 16
itemsets based on our ranking, (ii) top 16 itemsets based on
state of the art ranking, (iii) randomly selected itemsets from
remaining (rank > 16 in both ranking). We conducted a user
study to evaluate the potential of these selected itemsets to
represent frequent user tasks.

Participants: We conducted our study with ten participants,
users of the creativity application, who have intermediate to
expert level experience with the application. Some of these
users are log analysts. We recruited participants by sending
invitation via email within an organization that heavily use the
application. Each of our participants had a minimum one year
experience with the application.

Tool: To conduct our user study, we developed a tool that
allows a user to browse the supporting sequences of a selected
pattern. The tool marks the minimum outlier based maximum
occurrence windows of a selected pattern using vertical lines.
It also highlights the elements belonging to the pattern. Figure
3 shows a screenshot of the tool.

Method: Our user study was a combination of exploration
and survey. In the exploration phase, we asked participants
to browse the supporting sequences of a selected itemset to
understand the usage of the corresponding operation group.
For each itemset, we asked participants to browse at least 10
supporting sequences while recommending them to browse
more sequences if required. After browsing phase, in survey
phase, we asked participants to rate the likelihood of the item-
set (operation group) to represent frequent user task in a scale
of 1 to 5. We also asked them to explain their decision and

Figure 3. Screenshot of our user study tool

explain the task itself in a few sentence(s). We repeated this
procedure for all 36 itemsets.

Evaluation Metrics
We use the following evaluation metrics to investigate the three
questions that we reported.

• M1. To evaluate the effectiveness of our pattern ranking
technique, we compare the task scores for two groups of
itemsets, (i) top 16 and (ii) remaining.

• M2. To compare the effectiveness of our ranking with that
of state of the art, we use information retrieval based metrics
such as normalized discounted cumulative gain (NDCG)
and precision/recall at rank k (P/R@k).

• M3. To evaluate the interpretability of our results, we per-
form in-depth analysis on the itemsets/operation-groups that
potentially represent frequent user tasks.

Normalized Discounted Cumulative Gain (NDCG)
NDCG is the standard metric to measure a model’s ranking
quality in information retrieval. It measures the performance
of a ranking technique based on the graded goodness of the
ranked entities. It varies from 0.0 to 1.0, with 1.0 represent-
ing the ideal ranking of the entities. Here we give a brief
background on NDCG.

The cumulative gain (CG) of a ranking model’s ordering is
the sum of goodness scores over the ranked entities. CG at a
particular rank position p is defined as:

CGp =
p

∑
1

reli (4)

where reli is the relevance of the result at position i.

Discounted cumulative gain (DCG) is the sum of each ranked
entity’s goodness score discounted by its position in ranking.
DCG is therefore higher when top quality entities are ranked

higher in results, and lower when they are ranked lower. DCG
is defined as:

DCGp =
p

∑
1

2reli −1
log2(i+1)

(5)

NDCG is defined as the ratio of a model’s DCG and the ideal
DCG (IDCG):

nDCGp =
DCGp

IDCGp
(6)

Precision/Recall at Rank k (P/R@k)
Precision and recall are set-based metrics for binary classifi-
cation tasks. In a ranking context, the relevant entities should
be present within the top k entries. Therefore, to evaluate a
ranking technique, measuring precision and recall score at
rank k can serve as a good metric. Another advantage of using
P/R@k is the scores are easy to interpret.

Experimental Results
In this subsection, we report the results of our experimental
evaluation.

Top 16 vs Remaining
Based on the user ratings from our study, we calculate the task
score for each selected itemset as the average rating provided
by the users. We compare the task scores for the top 16
itemsets and the remaining itemsets, for the two rankings.
Figure 4 shows the boxplot summary of task scores for the two
groups of itemsets for our ranking, whereas Figure 5 shows
similar plot for state of the art ranking.

Notice that for our ranking, the task scores for the top 16 item-
sets are much higher compared to that of remaining itemsets.
Among the top 16 itemsets, 14 itemsets received task scores
ranging from 4.3 to 4.8, whereas the other 2 received 3.6 and
3.5. Among the 20 itemsets outside top 16, only 2 itemsets
received more than 3 (3.4 and 3.5). As a matter of fact, these
2 itemsets with high scores are reasonably well ranked (rank
17 and 22) in our ranking.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

Top 16 Remaining

A
ve

ra
ge

 R
at

in
gs

Figure 4. Boxplot summary of task scores (average user ratings) for two
groups of itemsets based on our ranking

For state of the art ranking, the difference of task scores for
the two groups of itemsets is not clear. While the average task
score is higher for the top 16 itemsets, there are many itemsets
outside top 16 that received high task scores.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

Top 16 Remaining

A
ve

ra
ge

 R
at

in
gs

Figure 5. Boxplot summary of task scores (average user ratings) for two
groups of itemsets based on state of the art ranking

Comparison with State of the Art
To compare our ranking with state of the art, we compute
NDCG and P/R@k for both ranking.

NDCG: To compute NDCG, we only use the itemsets that
are within top 16 either in our ranking or in state of the art
ranking. There are 26 such itemsets. For these itemsets, we use
the average user ratings as graded relevance scores. Further,
instead of using the actual ordering of these itemsets in a
ranking, we use relative ordering of these 26 itemsets as per
the ranking. We do this to avoid ranking gaps for the itemsets
with rank > 16 in both rankings.

Ranking Method DCG nDCG
Our Method 187.77 0.95
State of the Art 135.27 0.69

Table 4. DCG and nDCG score for two rankings

Table 4 shows the DCG and nDCG scores for the two rankings.
Notice that the NDCG score for our ranking (0.95) is much
higher compared to that of state of the art (0.65). This implies
that our ranking is more effective in placing relevant itemsets
on top.

P/R@k: We compute P/R@k for the two rankings, for dif-
ferent k values. To compute P/R@k, we classify the itemsets
with average ratings greater than 3 as potential tasks, whereas
the other itemsets as not likely to be tasks.

k Our Method State of the Art
P@k R@k P@k R@k

2 1.0 0.11 1.0 0.11
4 1.0 0.22 0.5 0.11
6 1.0 0.33 0.5 0.17
8 1.0 0.44 0.63 0.28

10 1.0 0.56 0.6 0.33
12 1.0 0.67 0.58 0.39
14 1.0 0.78 0.64 0.5
16 1.0 0.89 0.56 0.5

Table 5. P/R@k for two rankings

Table 5 shows the P/R@k scores for the two rankings, for
different k values. Notice that for most k values, precision and
recall scores for our ranking is much higher compared to that
of state of the art.

Potential Frequent Tasks
Based on the average ratings from our user study, we identify
the itemsets with average ratings greater than 3 as potential
tasks, whereas the other itemsets as not likely to be tasks.
In Table 6, we present user provided explanation of these
potential tasks.

As per our user study, both intermediate and expert users are
familiar with many of the potential tasks: “That makes sense.”,

“This is an obvious task.”, “This is what I expect. This is 100%
a task.”.

In fact, they could correlate to some of these tasks: “I can
imagine this being a task. I do this a lot.”, “This is something
I do a lot too.”.

Yet, at times some users recognized an itemset as a task based
on the example operation sequences: “I am identifying this as
a task based on the example logs.”, “I am not familiar with

’Nudge’. This is based on the sequences I have seen.”

While many of the potential tasks didn’t surprise the users,
some did: “I don’t understand why they are deleting the layer.”,

“Weird, so many people are doing it.”.

Users also validated our assumption regarding the ordering of
operations in a task (assumption A1): “Fair mix of orders; I
am not sure if there is any order for this task.”, “This is pretty
consistent, the sequence doesn’t matter.”

IMPLICATIONS
Our work draws from, and has implications for, several re-
search threads.

Implications for User Behavior Modeling
Understanding user behavior is crucial for the design and
operation of modern software applications. A number of early
studies analyzed log data to model user behavior. For example,
[1, 14] study web revisitation behavior of users by analyzing
web logs. [15] studies image search behavior of users by
analyzing query logs. [20, 19] built system(s) to capture user
behavior from clickstream data. More specific log data based
user behavior models appear in [6, 18].

This paper addresses a fundamental problem in the log data
based user behavior model space. We assert that understanding
user task is often a crucial first step in understanding user
behavior. Tasks are semantically meaningful units that offer
better user insight compared to the raw action sequences.

Implications for Temporal Event Sequence Analysis
Temporal event sequence data is pervasive in many application
domains, including electronic commerce and digital marketing
[10, 21], user workflow and behavior analysis [20, 9], online
education [17] and healthcare [16, 13]. In recent years, we
have seen several research works that utilize frequent pattern
mining techniques to analyze temporal event sequence data
[10, 7, 16].

The concepts introduced in this paper can be useful in tempo-
ral event sequence analysis. For example, membership based

Id Itemset/Operation-Group User Description R1 R2 U
I1 {Crop,Open,Image Size} Cropping an image and checking the 2 2 4.8

size of its dimensions
I2 {New,Open,New Document:Custom,Paste} Creating a new file from an existing 1 20 4.8

one via copy-pasting
I3 {Open,New Document:Custom,Paste} Creating a new file from an existing 8 22 4.8

one via copy-pasting
I4 {Open,Paste,Select Canvas} Selecting the entire canvas before 8 25 4.8

pasting; mostly done by novice users
I5 {Free Transform,Nudge,Move} Applying different move operations 2 7 4.7

to put something in correct position
I6 {New,Open,New Document:Custom} Opening a file 2 1 4.6
I7 {Edit Type Layer,New Type Layer,Move} Editing and moving text 2 11 4.6
I8 {Free Transform,Edit Type Layer,Move} Editing text and adjusting text size 2 14 4.6
I9 {Free Transform,Paste,Move} Scaling and rotating something during 2 19 4.6

copy-pasting
I10 {Layer Order,Free Transform,Move} Moving something and changing the 8 5 4.5

ordering of layers
I11 {Free Transform,Open,Drag Layer} Positioning something via Drag Layer 8 18 4.5

& making a movement to scene graph
I12 {New,Open,Paste} Creating a new file from an existing 8 21 4.5

one via copy-pasting
I13 {Free Transform,Edit Type Layer,Nudge} Editing text and adjusting text size 8 23 4.4
I14 {New,New Document:Custom,Paste} Pasting stuff into a new file from a file 8 24 4.3

belonging to a different application
I15 {Free Transform,Move,Delete Layer} Trying to fix a mistake; not an actual 8 7 3.6

task as the goal is not by choice
I16 {Rectangular Marquee,Free Transform,Deselect} Doing a pointless thing; not a real task 17 9 3.5
I17 {Crop,New,Open,New Document:Custom} Creating a cropped version of an image 8 26 3.5

while preserving the original one
I18 {Free Transform,Open,Nudge} Small tweak to put something in a layer 22 11 3.4

Table 6. User provided description of itemsets (potential frequent user tasks) with (i) rank based on our ranking (R1); (ii) rank based on state of the art
ranking (R2); (iii) average user rating (U). The itemsets with rank >= 16 in our ranking are highlighted in gray.

cohesion may reveal useful structural patterns for understand-
ing relationships among temporal events. Such patterns can
serve as a special class of behavioral motifs.

Implications for Clickstream Analysis and Visualization
Clickstream data is a valuable source in understanding user
behavior. Researchers have proposed a variety of techniques
that can be used for analyzing and visualizing [8, 13, 23]
clickstream data. More recently, researchers have integrated
visual exploration with analytics to develop visual analytics
system for clickstreams [9, 10, 20, 21]. Visual analytics system
for temporal event sequence data [11, 16] can also be used for
clickstreams.

User task identification is a useful exercise in clickstream
analysis and visualization. In particular, converting click se-
quences into coarse grained task sequences can be extremely
useful. For example, clustering users based on task sequences
has two benefits over clustering based on click sequences.
First, tasks are semantically meaningful and consequently,
the clusters are easily interpretable. Second, tasks eliminate
noise (e.g., mistakes or unintended actions) and consequently,
the clusters are robust. Click sequence to task sequence con-
version can also be useful in clickstream visualization. In
particular, visualizing task sequence instead of click sequence

can address the challenge of dealing with long clickstreams
that are hard to visualize.

DISCUSSION
In this section, we discuss different dimensions of our pro-
posed pattern ranking technique.

Dropping Assumptions
The four assumptions that we report form the basis of our
approach. Yet, one or more of these assumptions may not be
applicable for certain applications.

For example, some applications may require extracting tasks
with defined operation ordering, which implies dropping as-
sumption A1. Notice that our definition of outlier based mini-
mum occurrence window and accordingly the formulation of
membership based cohesion is applicable to both itemsets and
sequential patterns. Thus, our pattern ranking technique can
extract frequent tasks in presence of strict ordering constraint.
In recent times, the concept of soft pattern has emerged in
many application domains. In contrast to the strict ordering
constraint of sequential patterns, soft patterns have flexible
ordering constraint. Our method can be applied with soft
patterns to uncover the partial ordering of operations within
tasks.

If we drop assumption A2, state-of-the-art cohesive itemset
mining can reveal frequent user tasks. Notice that cohesive
itemsets satisfy all assumptions, except A2.

Dropping assumption A3 will ease the frequent user task iden-
tification problem.

Finally, dropping assumption A4 will harden the frequent user
task identification problem. Under this setting, all frequent
itemsets or sequential patterns are likely to be tasks.

Threshold Θ

The value of support threshold Θ affects the result of frequent
pattern mining and consequently, pattern ranking. We applied
frequent pattern mining on our log datatset with different sup-
port thresholds such as 1%, 2%, 5% and 10%. In addition, we
ranked the resultant patterns using membership based cohe-
sion. We find that, with lower support threshold, we get more
fine grained potential tasks (operation-groups).

Semantic Factors
As the frequent pattern mining techniques are syntactical, they
ignore the semantic issues such as task equivalence. For ex-
ample, in Table 6, I8 and I13 represent the same logical task.
However, it is not possible for a syntax based technique to
capture such semantic similarity.

Containment
Containment is a central concept in frequent pattern mining.
Notice that, if a pattern is frequent, each of its subpatterns is
frequent as well. To address this issue, the idea of closed and
maximal frequent patterns came into play. A closed frequent
pattern is a frequent pattern that includes as many events as
possible without compromising support. The idea of maximal
frequent pattern is even stricter: a maximal frequent pattern is
a frequent pattern that is not contained within another frequent
pattern. Both frequent itemsets and sequential patterns have
corresponding closed and maximal class. It is interesting that
we can not use closed or maximal patterns for identifying
frequent tasks. These pattern classes eliminate candidates
based on containment, which is not a relevant criterion in our
problem formulation. As a result, using these pattern classes
escorts the risk of eliminating potential tasks from the ranking
pool.

Interpretability
There are different types of high-level structures that we can
extract from event sequences. From a human centred perspec-
tive, interpretability is a key factor in deciding which type to
use. While machine learning based models are effective for
prediction, such models are often difficult for humans to under-
stand. In contrast, frequent patterns offer easy to understand
patterns.

CONCLUSION
In this paper, we propose a novel frequent pattern ranking
technique to extract frequent user tasks from application logs.
Our technique is based on membership based cohesion, which
prioritizes the patterns whose events appear contagiously in
the supporting sequences with no or few outliers. We apply

our technique on a real-world log dataset and conduct a user
study to evaluate its effectiveness. Our experimental study
shows that our technique outperforms state of the art for a
variety of standard metrics such as NDCG and P/R@k.

ACKNOWLEDGEMENTS
We thank Matthew Hoffman, Hidy Kong, Stephen Nielson,
Manoj Ravi, and John Thompson for their valuable feedback
on this project. We also thank our user study participants for
their time and feedback.

REFERENCES
1. Eytan Adar, Jaime Teevan, and Susan T. Dumais. 2008.

Large Scale Analysis of Web Revisitation Patterns. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’08). ACM, New
York, NY, USA, 1197–1206. DOI:
http://dx.doi.org/10.1145/1357054.1357241

2. Charu C. Aggarwal and Jiawei Han. 2014. Frequent
Pattern Mining. Springer Publishing Company,
Incorporated.

3. Rakesh Agrawal, Tomasz Imieliński, and Arun Swami.
1993. Mining Association Rules Between Sets of Items in
Large Databases. In Proceedings of the 1993 ACM
SIGMOD International Conference on Management of
Data (SIGMOD ’93). ACM, New York, NY, USA,
207–216. DOI:http://dx.doi.org/10.1145/170035.170072

4. Rakesh Agrawal and Ramakrishnan Srikant. 1995.
Mining Sequential Patterns. In Proceedings of the
Eleventh International Conference on Data Engineering
(ICDE ’95). IEEE Computer Society, Washington, DC,
USA, 3–14.
http://dl.acm.org/citation.cfm?id=645480.655281

5. Boris Cuke, Bart Goethals, and Celine Robardet. A new
constraint for mining sets in sequences. 317–328. DOI:
http://dx.doi.org/10.1137/1.9781611972795.28

6. R. Stuart Geiger and Aaron Halfaker. 2013. Using Edit
Sessions to Measure Participation in Wikipedia. In
Proceedings of the 2013 Conference on Computer
Supported Cooperative Work (CSCW ’13). ACM, New
York, NY, USA, 861–870. DOI:
http://dx.doi.org/10.1145/2441776.2441873

7. Brian C. Keegan, Shakked Lev, and Ofer Arazy. 2016.
Analyzing Organizational Routines in Online Knowledge
Collaborations: A Case for Sequence Analysis in CSCW.
In Proceedings of the 19th ACM Conference on
Computer-Supported Cooperative Work & Social
Computing (CSCW ’16). ACM, New York, NY, USA,
1065–1079. DOI:
http://dx.doi.org/10.1145/2818048.2819962

8. Joseph B Kruskal and James M Landwehr. 1983. Icicle
plots: Better displays for hierarchical clustering. The
American Statistician 37, 2 (1983), 162–168.

9. Heidi Lam, Daniel M. Russell, Diane Tang, and Tamara
Munzner. 2007. Session Viewer: Visual Exploratory
Analysis of Web Session Logs. In Symposium on Visual
Analytics Science and Technology (VAST). 147–154.

http://dx.doi.org/10.1145/1357054.1357241
http://dx.doi.org/10.1145/170035.170072
http://dl.acm.org/citation.cfm?id=645480.655281
http://dx.doi.org/10.1137/1.9781611972795.28
http://dx.doi.org/10.1145/2441776.2441873
http://dx.doi.org/10.1145/2818048.2819962

10. Zhicheng Liu, Yang Wang, Mira Dontcheva, Matt
Hoffman, Seth Walker, and Alan Wilson. 2017. Patterns
and Sequences: Interactive Exploration of Clickstreams
to Understand Common Visitor Paths. IEEE Transactions
on Visualization and Computer Graphics 23, 01 (Janaury
2017).

11. Sana Malik, Fan Du, Megan Monroe, Eberechukwu
Onukwugha, Catherine Plaisant, and Ben Shneiderman.
2015. Cohort Comparison of Event Sequences with
Balanced Integration of Visual Analytics and Statistics.
In Proceedings of the 20th International Conference on
Intelligent User Interfaces (IUI ’15). ACM, New York,
NY, USA, 38–49. DOI:
http://dx.doi.org/10.1145/2678025.2701407

12. Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo.
1997. Discovery of Frequent Episodes in Event
Sequences. Data Min. Knowl. Discov. 1, 3 (Jan. 1997),
259–289. DOI:
http://dx.doi.org/10.1023/A:1009748302351

13. Megan Monroe, Rongjian Lan, Hanseung Lee, Catherine
Plaisant, and Ben Shneiderman. 2013. Temporal event
sequence simplification. Visualization and Computer
Graphics, IEEE Transactions on 19, 12 (2013),
2227–2236.

14. Hartmut Obendorf, Harald Weinreich, Eelco Herder, and
Matthias Mayer. 2007. Web Page Revisitation Revisited:
Implications of a Long-term Click-stream Study of
Browser Usage. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’07). ACM, New York, NY, USA, 597–606. DOI:
http://dx.doi.org/10.1145/1240624.1240719

15. Jaimie Y. Park, Neil O’Hare, Rossano Schifanella,
Alejandro Jaimes, and Chin-Wan Chung. 2015. A
Large-Scale Study of User Image Search Behavior on the
Web. In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems (CHI ’15).
ACM, New York, NY, USA, 985–994. DOI:
http://dx.doi.org/10.1145/2702123.2702527

16. Adam Perer and Fei Wang. 2014. Frequence: Interactive
Mining and Visualization of Temporal Frequent Event
Sequences. In Proceedings of the 19th International
Conference on Intelligent User Interfaces (IUI ’14).
ACM, New York, NY, USA, 153–162. DOI:
http://dx.doi.org/10.1145/2557500.2557508

17. Huamin Qu and Qing Chen. 2015. Visual Analytics for
MOOC Data. IEEE Computer Graphics and Applications
35, 6 (Nov 2015), 69–75. DOI:
http://dx.doi.org/10.1109/MCG.2015.137

18. Jeffrey M. Rzeszotarski and Aniket Kittur. 2011.
Instrumenting the Crowd: Using Implicit Behavioral
Measures to Predict Task Performance. In Proceedings of
the 24th Annual ACM Symposium on User Interface
Software and Technology (UIST ’11). ACM, New York,
NY, USA, 13–22. DOI:
http://dx.doi.org/10.1145/2047196.2047199

19. Gang Wang, Tristan Konolige, Christo Wilson, Xiao
Wang, Haitao Zheng, and Ben Y. Zhao. 2013. You Are
How You Click: Clickstream Analysis for Sybil
Detection. In Proceedings of the 22Nd USENIX
Conference on Security (SEC’13). USENIX Association,
Berkeley, CA, USA, 241–256.
http://dl.acm.org/citation.cfm?id=2534766.2534788

20. Gang Wang, Xinyi Zhang, Shiliang Tang, Haitao Zheng,
and Ben Y. Zhao. 2016. Unsupervised Clickstream
Clustering for User Behavior Analysis. In Proceedings of
the 2016 CHI Conference on Human Factors in
Computing Systems (CHI ’16). ACM, New York, NY,
USA, 225–236. DOI:
http://dx.doi.org/10.1145/2858036.2858107

21. Jishang Wei, Zeqian Shen, Neel Sundaresan, and
Kwan-Liu Ma. 2012. Visual cluster exploration of web
clickstream data. In Visual Analytics Science and
Technology (VAST), 2012 IEEE Conference on. IEEE,
3–12.

22. Wikipedia. 2017. Ranking — Wikipedia, The Free
Encyclopedia. (2017).
https://en.wikipedia.org/wiki/Ranking [Online;
accessed 9-January-2017].

23. Jian Zhao, Zhicheng Liu, Mira Dontcheva, Aaron
Hertzmann, and Alan Wilson. 2015. MatrixWave: Visual
Comparison of Event Sequence Data. In Proceedings of
the 33rd Annual ACM Conference on Human Factors in
Computing Systems (CHI ’15). ACM, New York, NY,
USA, 259–268. DOI:
http://dx.doi.org/10.1145/2702123.2702419

http://dx.doi.org/10.1145/2678025.2701407
http://dx.doi.org/10.1023/A:1009748302351
http://dx.doi.org/10.1145/1240624.1240719
http://dx.doi.org/10.1145/2702123.2702527
http://dx.doi.org/10.1145/2557500.2557508
http://dx.doi.org/10.1109/MCG.2015.137
http://dx.doi.org/10.1145/2047196.2047199
http://dl.acm.org/citation.cfm?id=2534766.2534788
http://dx.doi.org/10.1145/2858036.2858107
https://en.wikipedia.org/wiki/Ranking
http://dx.doi.org/10.1145/2702123.2702419

	Introduction
	Background Study
	Participants

	Objectives, Data and Techniques
	Objectives
	Data
	Techniques

	Identifying Frequent User Tasks
	Problem Formulation
	Frequent Pattern Mining
	Preliminaries
	Frequent Pattern Classes
	Limitations

	Membership Based Cohesion for Patterns
	Membership Based Cohesion
	Frequent Task Identification

	Evaluation
	Dataset
	Method
	Phase I: Frequent Itemset Mining and Ranking
	Phase II: User Study

	Evaluation Metrics
	Normalized Discounted Cumulative Gain (NDCG)
	Precision/Recall at Rank k (P/R@k)

	Experimental Results
	Top 16 vs Remaining
	Comparison with State of the Art
	Potential Frequent Tasks

	Implications
	Implications for User Behavior Modeling
	Implications for Temporal Event Sequence Analysis
	Implications for Clickstream Analysis and Visualization

	Discussion
	Dropping Assumptions
	Threshold
	Semantic Factors
	Containment
	Interpretability

	Conclusion
	Acknowledgements
	REFERENCES

