NetClinic: Interactive Visualization to Enhance Network Fault Diagnosis

Zhicheng Liu, Bongshin Lee, Srikanth Kandula and Ratul Mahajan

Microsoft[®]

1

The Problem: Diagnosing Enterprise Networks

- Faults: Anomalies in application behavior
 Cannot send email, browser extremely slow, network connectivity down ...
- Difficulty in identifying culprits / root causes
 Network components interact in complex ways
 - Information overloading: too many variables

3 Not diagnosing at the level of network path and individual switches

Motivation for Visual Analytics

- Automated diagnosis tools are not always accurate
 - Rely on minimal application specific semantic knowledge
 - Mostly statistical
- Even when true culprit is identified
 - Need for exploration and verification
 - Ground truth is not known before-hand

An ideal visual analytics problem

Automated Diagnosis NetMedic [Kandula et al., SIGCOMM 2009]

- Variable Level: Performance Counters
- Component Level: Statistical Abnormality
- Edge Level: Potentiality of Impact
 - Statistical analysis of joint behavior of neighbors
- Network Level: Given a faulty component, Identifying Culprits
 Rank edge weights to order likely causes

Data-Frame Interaction in Network Diagnosis

Problem: a SQL client cannot talk to the server

Network Level	other clients are overloading the server	the fault is due to the change in firewall rule
Edge Level		client using a port number blocked by the firewall change
Component Level	check server machine application state	firewall rules of the server machine changed
Variable Level	i/o operations normal CPU / memory normal	
		Frame
3		Data

Design Considerations

- Output of automated engines can be used as useful frames
- Show outputs at all levels of abstraction
 - Minimal constraints on navigation across levels of abstraction
- Flexible exploration
 - Top-down exploration: verify the output of automated analysis
 - Bottom-up exploration: form and evaluate own hypothesis

Machine-based clustering

11

Qualitative User Study

- Participants: 10 graduate students + 1 system engineer working on computer networks or operating systems
- Data: real environment with faults injected
 - Ground truths known
- NetClinic: suggest top 5 most likely causes
 - True culprit inside these five 50% of the time
- Training: 4 machines, 243 nodes, 683 links
- Test: 7 machines, 682 nodes, 2045 edges
- Video-taped, think-aloud protocols, semi-structured interviews

Tasks

• Given a reported problem, use NetClinic to find out the network component that most likely caused the problem.

	Symptom of Fault	Causes
Training =	The email client on a machine is experiencing some errors	The client's configuration is broken
	Some SQL clients are experiencing poor performance	Another client is overloading the server
	An email client cant get up-to-date data from server	The remote drive is dismounted
Testing =	Some users were unable to access a specific feature of a Web-based application	The firewall along the path was blocking https traffic
17	Some clients cannot connect to the database serve	A port used by the problematic clients had been blocked by a change in firewall rules on the server machine

Results

- True culprits correctly identified in 29 out of 33 tasks (88%)
 - Culprits in top five suggestions 50% of the time
- Completed all 3 tasks within 1 hour

Survey

19

 subjective opinions on graph layout, visual design, usefulness, ease of learning

Flexibility in Exploration Strategies

- Most did not adopt a "least-effort" strategy
 - Verify all five suggestions before start self-exploration
- Using one diagnosis as entry point to learn about the problem
- Generate and verify frames, use automated diagnoses to make sure nothing was overlooked
- Not using network level diagnosis at all

20

Related Work

- Security monitoring / intrusion detection in computer networks
 - [Erbacher et al. 2002, Mansmann et al. 2007]
 - Tasks are different from fault diagnosis
- Visualization-based network diagnosis
 - SCUBA, nCompass, and MTreeDX
 - Mostly visualizing raw data
- Visual analytics in relationship networks
 - E.g., social networks [Social Action, 2006]

Contributions

- Coupling visualizations with a *sophisticated* reasoning engine
 - Integrated automated analyses across multiple levels
 - Explicit design consideration of sensemaking processes
 - A novel semantic graph layout design

Future Directions

- Scalability
 - Integrating machine-level diagnosis
- More evaluation
 - Long term study with professional administrators

Thank you

Questions?